
mark.daniel@wasd.vsm.com.au VMSgenerations April 2022

 VMS is VMS is VMS is VMS
 -VAX Alpha IA64 +x86-64

Good morning VMS colleagues.

First some thanks;

 for the opportunity to chat about porting to X86 VMS.

 to Jeremy Begg for providing the cross-compiler environment and currently on-line X86 WASD site.

 and finally to VSI for the opportunity to participate in such an interesting and pivotal field-test.

As you can see from the title slide - with some caveats - VMS is VMS is VMS is VMS.

And the WASD porting experience underscores this for me.

mailto:mark.Daniel@wasd.vsm.com.au

Moving User Mode
Application(s) To

x86-64
(spoiler alert: c'est du gâteau)

This session concerns USER mode code.

Undoubtedly elevated modes will be less straight-forward.

And I seem to have given it aways already - the port was very straight-forward.

It really was a piece of cake.

VMS is VMS …
agenda

application environment

x86-64 porting (EAK V9.0)

 after one hour

 after eight hours

 x86-64 code specifics

x86-64 porting (EAK V9.1)

 development platforms

 cross compiling

 x86-64 performance

questions?

There are three main sections to this session.

1) A brief description of the application code environment.

2) A summary of the initial port (V9.0), eighteen months ago.

3) Some comments on the subsequent port (V9.1), six months ago.

Application Environment
WASD HTTP services package

• First developed early ’90s on VAX - 32 bit

• Initially VAX C, now DEC / VSI C

• Ported to Alpha (’95) and Itanium (’04)

• 32 bit with necessary 64 bit data as adjacent longwords

• Uses SYS$ services extensively

• Uses LIB$ routines (less) extensively

• All USER MODE code

Application Environment
WASD HTTP services package

• server code / comment counts 
 
 
 
 
 
 
 
 
 code: 163,000 lines 77% of total 
 
comment: 21,976 lines 10% of total

--------------------------------- OVERALL ------------------------------------
 ------Total------ -----------Code------------ ----------Comment----------

 Lines Chars Lines Chars Lines Chars
 ------- --------- ------- ---- --------- ---- ------- ---- --------- ----
0172 237768 7861504 163085 77% 4388885 72% 21976 10% 1650720 27%

x86-64 Porting
EAK 9.0 (September 2020)

• BXNUC10i7FNH4 6 core i7 1.10GHz 32GB  
(thanks to Jeremy Begg of VSM Software Services)

Generously resourced Intel NUC compact form-factor computer.

Linux O/S.

Virtualbox.

VMS V9.0 supplied as a (largely) pre-configured virtual HDD containing an ODS-5 file system.

x86-64 Porting
EAK 9.0 (September 2020)

• BXNUC10i7FNH4 6 core i7 1.10GHz 32GB  
(thanks to Jeremy Begg of VSM Software Services)

• After approximately one hour  
 
 
 
 
 
 
all the “core” code was built and running

$ mcr wasd_root:[x86_64]httpd /version
%HTTPD-I-SOFTWAREID, HTTPd-WASD/11.5.1 OpenVMS/X86
WASD VMS Web Services, Copyright (C) 1996-2020 Mark G.Daniel.
8< snip 8<
-HTTPD-I-SYSTEM, VBOX VBOXFACP 1 CPU 15361MB VMS V9.0-D
-HTTPD-I-TCPIP, Not (yet) for x86-64!
-HTTPD-I-TLS, none

Some preliminary hacking of source code placed __x86_64 conditionals in parallel with existing __VAX, __ALPHA __ia64.

It was then just a matter of running the server build procedures and correcting the typos.

x86-64 Porting
EAK 9.0 (September 2020)

• BXNUC10i7FNH4 6 core i7 1.10GHz 32GB  
(thanks to Jeremy Begg of VSM Software Services)

• After approximately one hour 
 
 
 
 
 
 
all the “core” code was built and running

• architecture-specific had hard-wired output (e.g. “Not (yet)…”) 
 
https://wasd.vsm.com.au/info-WASD/2020/0099

$ mcr wasd_root:[x86_64]httpd /version
%HTTPD-I-SOFTWAREID, HTTPd-WASD/11.5.1 OpenVMS/X86
WASD VMS Web Services, Copyright (C) 1996-2020 Mark G.Daniel.
8< snip 8<
-HTTPD-I-SYSTEM, VBOX VBOXFACP 1 CPU 15361MB VMS V9.0-D
-HTTPD-I-TCPIP, Not (yet) for x86-64!
-HTTPD-I-TLS, none

https://wasd.vsm.com.au/info-WASD/2020/0099

x86-64 Porting
EAK 9.0 (September 2020)

• Approximately eight hours (excluding chasing bugs in the EAK) 
filled in the majority of the architecture specifics

%HTTPD-I-SOFTWAREID, HTTPd-WASD/11.5.1 OpenVMS/X86 SSL
WASD VMS Web Services, Copyright (C) 1996-2020 Mark G.Daniel.
8< snip 8<
%HTTPD-I-SYSTEM, VBOX VBOXFACP VMS V9.0-D
8< snip 8<
%HTTPD-I-SSL, OpenSSL 1.1.1g 21 Apr 2020 (0x1010107F)
-SSL-I-PROTOCOL, TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
-SSL-I-OPTIONS, 0x80410854
-SSL-I-SNI, Server Name Indication enabled
-SSL-W-DH, no ephemeral DH param
%HTTPD-I-HTTP2, enabled
8< snip 8<
%HTTPD-I-SERVICE, http://x86v1.vsm.com.au:7080
%HTTPD-I-SERVICE, https://x86v1.vsm.com.au:7443
%HTTPD-I-SSL, x86v1.vsm.com.au:7443
Generate x86v1.vsm.com.au 2048 bit private key:
................++++++++++++
.......++++++++++++++
%HTTPD-I-DEMO, demonstration mode
8< snip 8<
%HTTPD-I-BEGIN, 18-SEP-2020 15:48:59, WASD:7080 accepting requests

A number of deficiencies were encountered with V9.0.

Establishing where the execution was breaking took time.

Creating simple reproducers to pass back to VSI took time.

However after eight hours of real work the server was basically up and running.

http://x86v1.vsm.com.au:7080/
https://x86v1.vsm.com.au:7443/

x86-64 Porting
EAK 9.0 (September 2020)

• 163,000 code lines 
X86 code specifics: 8

• each of these paralleled existing 
__VAX, __ALPHA, __ia64 specifics 
 
 
 
 
 
 
 
 
https://wasd.vsm.com.au/info-WASD/2020/0102 
https://wasd.vsm.com.au/other/WASD%20x86-64%2019-SEP-2020.html

$ search *.c "#ifdef __x86

WASD_ROOT:[src.HTTPDX]httpd.c;6

#ifdef __x86_64
#ifdef __x86_64
#ifdef __x86_64

WASD_ROOT:[src.HTTPDX]net.c;17

#ifdef __x86_64

WASD_ROOT:[src.HTTPDX]sysplus.c;3

#ifdef __x86_64

WASD_ROOT:[src.HTTPDX]tcpip.c;7

#ifdef __x86_64
#ifdef __x86_64

WASD_ROOT:[src.HTTPDX]version.c;3

#ifdef __x86_64

Just to reiterate.

Many of which were fairly trivial cut-n-paste modification of a literal.

But not all of them.

https://wasd.vsm.com.au/info-WASD/2020/0102
https://wasd.vsm.com.au/other/WASD%20x86-64%2019-SEP-2020.html

 if (ExitStatus != SS_W_CONTROLY)
 {
 /* add traceback information */
 int SanityCheck = 100;
#ifdef __ALPHA
 lib$get_curr_invo_context (&icb);
 while (lib$get_prev_invo_context (&icb),
 !icb.libicb$v_bottom_of_stack && SanityCheck--)
 fprintf (stdout, "-HTTPD-F-TRACE, %08.08X%08.08X\n",
 icb.libicb$q_program_counter[1],
 icb.libicb$q_program_counter[0]);
#endif
#ifdef __ia64
 lib$i64_init_invo_context (&icb, LIBICB$K_INVO_CONTEXT_VERSION);

 lib$i64_get_curr_invo_context (&icb);
 while (lib$i64_get_prev_invo_context (&icb),
 !icb.libicb$v_bottom_of_stack && SanityCheck--)
 fprintf (stdout, "-HTTPD-F-TRACE, %08.08X%08.08X\n",
 ((ULONGPTR)&icb.libicb$ih_pc)[1],
 ((ULONGPTR)&icb.libicb$ih_pc)[0]);
#endif
#ifdef __x86_64
 lib$x86_init_invo_context (&icb, LIBICB$K_INVO_CONTEXT_VERSION);

 lib$x86_get_curr_invo_context (&icb);
 while (lib$x86_get_prev_invo_context (&icb),
 !icb.libicb$v_bottom_of_stack && SanityCheck--)
 fprintf (stdout, "-HTTPD-F-TRACE, %08.08X%08.08X\n",
 ((ULONGPTR)&icb.libicb$ih_ip)[1],
 ((ULONGPTR)&icb.libicb$ih_ip)[0]);
#endif
 /* list current and history list requests */
 RequestDump ();
 }

This is a portion of the server error exit handling.

Reinventing an X86-specific section of IA64 code.

Required checking the C header file for an X86 equivalent of the IA64 calls.

So - trivial bordering on the non-trivial - or non-trivial bordering on the trivial :-)

My thanks to Jean-Pierre Petit for providing the original code for this traceback. Jean-Pierre has never reported a problem (and he has a few over the years) without also
providing a solution. Merci beaucoup.

8 hours 
8 X86 specifics 

163,000 code lines

x86-64 Porting
native 64 bit storage

• After the relative ease of the initial port (EAK 9.0) 
 
 it was decided to retire VAX support (not a difficult decision) 
 
 and remove all VAX 32 bit accomodations 
 
 using native 64 bit data storage (e.g. [long][long] to [int64])

• This design decision was totally unrelated to X86 support

• Lots of fairly dry hack work and six months incremental field testing 
 
 across 4 sites and 3 platforms later … v12.0.0

x86-64 Porting
EAK V9.1 (June 2021) and V9.1-A (September 2021)
• Deciding I needed some further hands-on, deployed existing 

 
 MacBook Pro, Intel Core i5, 2.7 GHz, 8GB 
 
a basic laptop

• Then a AU$300 (~€200) eBay purchase  
 
 Dell Optiplex 9020 SFF i7-4770 QC 3.4Ghz 16GB Windows 10 Pro 
 
a basic desktop

• I now have fairly cost-effective VMS development systems 
 
https://wasd.vsm.com.au/info-WASD/2021/0063 
https://wasd.vsm.com.au/info-WASD/2021/0091

Unlike V9.0, V9.1 was deployed by VSI as an ISO image and installed using the familiar

1) Upgrade, install or reconfigure OpenVMS …

2) Display layered products that this procedure can install

…

9) Shut down this system

https://wasd.vsm.com.au/info-WASD/2021/0063
https://wasd.vsm.com.au/info-WASD/2021/0091

x86-64 Porting
cross compiling

• All compilation (currently) requires an Itanium host 
 
 
 
 
 
 
 
 
 
 
 
$ @SYS$MANAGER:X86_XTOOLS$SYLOGIN.COM

IA64$ product show history X86_XTOOLS
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
VSI I64VMS X86_XTOOLS V9.1-A_XG1K Full LP Install Val 27-OCT-2021
VSI I64VMS X86_XTOOLS V9.0-H_XFX8 Full LP Remove - 27-OCT-2021
VSI I64VMS X86_XTOOLS V9.0-H_XFX8 Full LP Install Val 18-APR-2021
VSI I64VMS X86_XTOOLS V9.0-F_XFRZ Full LP Remove - 18-APR-2021
VSI I64VMS X86_XTOOLS V9.0-F_XFRZ Full LP Install Val 18-DEC-2020
VSI I64VMS X86_XTOOLS V9.0-C_XFN5 Full LP Remove - 18-DEC-2020
VSI I64VMS X86_XTOOLS V9.0-C_XFN5 Full LP Install Val 13-SEP-2020
------------------------------------ ----------- ----------- --- -----------
7 items found

For formal V9.1 X86 release (i.e. WASD community) build procedures required some modification so that building under the cross-compiler (i.e. on Itanium) targeted X86
object directories.

x86-64 Porting
cross compiling

• Parallel source code trees 
 
 IA64$ SET DEFAULT WASD_ROOT:[000000] 
 IA64$ ZIP “-V” disk:[directory]file.ZIP […OBJ_X86_64]*.OBJ 
 … 
 X86$ SET DEFAULT WASD_ROOT:[000000] 
 X86$ UNZIP disk:[directory]file.ZIP

• a minor embuggerance

• Alternatively; use clustered IA64-X86 nodes and MSCP-shared volume 
Clustering works very effectively

• native X86 compilers promised incrementally during V9.2 releases

x86-64 Performance
V9.1-A (December 2021)

• VMS itself boots in seconds

• ! Dell Optiplex 9020 4 core i7 3.4Ghz 16GB
X86VMS$ @vups.com
innotek GmbH VirtualBox with 3 CPU and 4492MB running VMS V9.1-A
Approximate System VUPs Rating : 244.9 (min: 244.4 max: 245.4)

! BXNUC10i7FNH4 6 core i7 1.10GHz 32GB
innotek GmbH with 2 CPU and 7680MB running VMS V9.1-A
Approximate System VUPs Rating : 456.8 (min: 453.2 max: 459.2)

Digital Personal WorkStation with 1 CPU and 1536MB running VMS V8.4-2L1
Approximate System VUPs Rating : 161.3 (min: 161.2 max: 161.4)

AlphaServer DS20 500 MHz with 2 CPU and 1536MB running VMS V8.4-2L2
Approximate System VUPs Rating : 254.8 (min: 254.8 max: 254.8)

HP rx2660 (1.40GHz/6.0MB) with 4 CPU and 14335MB running VMS V8.4-2L1
INFO: Preventing endless loop (10$) on fast CPUs
Approximate System VUPs Rating : 499.6 (min: 497.8 max: 501.4)

This is the “standard” VUPS.COM DCL procedure that’s been kicking around for ever. Modified to output the hardware, CPU count, memory size, and VMS version.

Doesn’t provide an absolute measure of performance but is useful for comparative purposes.

Also remember, this is non-optimised operating system code!

x86-64 Performance
V9.1-A (December 2021)
•  

•  
 

•

X86VMS$ TCPIP SHOW VERSION
VSI TCP/IP Services for OpenVMS x86_64 Version X6.0
on an innotek GmbH VirtualBox running OpenVMS V9.1-A

X86VMS$ curl -ko nl: http://192.168.1.86/dka100/colossus.mp4
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1398M 100 1398M 0 0 52.2M 0 0:00:26 0:00:26 --:--:-- 52.7M

X86VMS$ MONITOR MODES
Combined for 3 CPUs 0 75 150 225 300
 + - - - - + - - - - + - - - - + - - - - +
 Interrupt State 39 |*****
 MP Synchronization |
 Kernel Mode 36 |****
 Executive Mode |
 Supervisor Mode |
 User Mode 47 |******
 Compatibility Mode |
 Idle Time 177 |***********************

Remember, this is non-optimised operating system code executing under a hypervisor!

innotek GmbH VirtualBox with 3 CPU and 4492MB running VMS V9.1-A

Approximate System VUPs Rating : 244.9 (min: 244.4 max: 245.4)

VSI TCP/IP Services 6.0 field test.

WASD X86 v12.0.0

cURL for X86 executing on the same X86 system (so no “real”) network I/O.

Sustained 500Mbps throughput.

SEK consuming 25% of available CPU, 16% USER, leaving 59% idle.

http://192.168.1.86/dka100/colossus.mp4

questions?

• KLAATU the original Alpha PWS - 120W (regardless - and noisy!)

• BA356 storage shelf (courtesy Jeremy Begg) with 15k HDD - 25W

• X86VMS the Dell SFF (SSD x 2) - 20W (quiescent) 40-60W (active)

WASD development bench

https://wasd.vsm.com.au/other/#WASD_x86-64

https://vsmx86.vsm.com.au

https://wasd.vsm.com.au/wasd/

https://vmssoftware.com/about/roadmap/

https://vmssoftware.com/about/openvmsv9-1/

https://wasd.vsm.com.au/other/#WASD_x86-64
https://vsmx86.vsm.com.au
https://wasd.vsm.com.au/wasd/
https://vmssoftware.com/about/roadmap/
https://vmssoftware.com/about/openvmsv9-1/

