WASD: why is it chosen
when there’s VMS Apache?

OpenVMS Advanced Technical Bootcamp 2006
Sessions D211 and D215

Mark Daniel

mark.daniel@wasd.vsm.com.au

WASD: why is it chosen
when there’slyl\/lS Apache?

ope"

OpenVMS Advanced Technical Bootcamp 2006
Sessions D211 and D215

Mark Daniel

mark.daniel@wasd.vsm.com.au

Hmmm. Session title is accepted using “VMS” then a missive arrives requesting the
use of a written “Open” before “VMS” even if verbally it is made silent. Ok! | can

live with that.

An objective assessment

by the author of WASD

An objective assessment

by the author of WASD

A bit like Bill Gates introducing the next generation of some Windows application
(only he’s probably not got holes in his socks).

WASD: why does it
continue to be chosen
when there’s Apache?

You can understand WASD being selected when OSU was the only other viable
alternative but from the times when OpenVMS Apache 1.3 and 2.1 have been
release why do sites continue to select WASD over this ported ‘industry standard’?

Apache: why Is It chosen
when there’'s WASD?

Of course the converse question could be asked! With WASD being stable for a
decade and OpenVMS Apache a bit of a moving target.

Ask me!! | have made successive modifications to the WASD CGILIB library that
attempts to smooth out the differences between OpenVMS-based web servers
catering for changes:

04-MAY-2005 MGD v1.8.0, support SWS 2.0 along with CSWS 1.2/1.3,
CgilLib__ApacheSetSockOpt() for SWS 2.0 BG control
22-APR-2002 MGD v1.6.3, CSWS APACHE_SHARED_SOCKET to APACHE$SHARED_SOCKET
08-JAN-2001 MGD wv1.5.2, CSWS V1.0-1 (VMS Apache) "Ffixbg" support (see note
above), APACHE_INPUT becomes APACHES$INPUT
09-APR-2000 MGD v1.4.0, VMS Apache environment (1.3.9 BETA)

WASD behaviours, while receiving additional functionality over the last decade,
have continued to transparently provide backward compatibility.

Rationale

Why would any developer choose
something not ‘industry standard’, with a
smaller user base, fewer tools and
seemingly more tenuous support?

The obvious riposte to a choice of something like WASD.

Rationale

Why would any developer choose
something not ‘industry standard’, with a
smaller user base, fewer tools and
seemingly more tenuous support?

Same might be asked of OpenVMS!

Sometimes for very good (and familiar) reasons.

Rationale

Purpose of the session is not (necessarily)
to proselytize WASD but to explain how it
might end up the preferred option for
given projects and sites.

If attending the session or reading the notes inclines you to download and evaluate
WASD all the better but it's not the primary objective.

The session is intended to familiarize you with those WASD capabilities that WASD
users think are important differentiators for the product, in a structured presentation
that attempts to tie the various elements together.

10

Thanks to Sponsors

Hewlett Packard

John Gillings and OpenVMS Engineering for the ‘admit one’

VSM Software Services

Jeremy Begg for not needing to swim here

Defence Science and Technology
Paul Amey for ‘board and lodging’

My wonderful spouse

Robyn for a long-/s/ leash and some pocket-money

11

Session Overview

Selection Considerations
Apache and WASD Features
Scripting Support
Performance

Case Studies
Education
Finance
Telecommunication

Poll

Differentiators
Testimonials

Rumination
Questions

There are four main sections to the session (now we have got this far).
1. Criteria that contribute to choosing a particular environment.
2. A review and comparison of Apache and WASD features.
3. An examination of four WASD sites.

These have been chosen to represent something other the usual
deployment of a web environment — for the publication of
‘documents’.

4. A brief review of those differentiators and question-time.

It is assumed that the audience is familiar with web terminology (e.g. CGlI, SSL) and
OpenVMS technology (e.g. ACME, AST).

Testimonials and quotations are not attributed. It did this for ‘privacy’ reasons, not
wishing to scatter contributors name and contact details around the Web. If you
want the author detail for any particular case-study, comment or testimonial then
please contact me directly at the email address on the title page and | will
provide these privately for you.

12

Selection Considerations

This is just a quick mnemonic to the basic criteria involved when selecting any
application, including Web-based ones.

13

Selection Considerations

m Purpose m Content
— Document publication — Static
— Data connectivity — Dynamic
— Web ‘applications’ = Scripting
— Security .- *-Pages (e.g. JSP, PHP)
_ Authentication sources ™ Scripting

— Access control —- CGl

— Privacy (e.g. SSL)

— Perl, PHP, Python, etc.

14

Selection Considerations

m Load m Other

— Peak — Policy

— Average — ‘Industry standard’
m Platform — Documentation

— Alpha, Itanium, VAX — Community

— OpenVMS Vn.n — Contractual

— Hobbyist, SOHO, — Skills base

Enterprise — Comfort zone

15

Features

Apache and WASD Toe-to-Toe

16

Macro Comparison

Apache WASD
HTTP/1.1 Yes Yes
Alpha/Itanium Yes Yes
Secure Sockets Yes Yes
IPv4 & IPv6 Yes Yes
Persistent Scripting Yes Yes
Access Control Yes Yes
Request ‘Rewrite’ Yes Yes
Proxy Yes Yes
Logging Yes Yes
Perl, PHP, Python, etc. Yes Yes
License GPL GPL

Apache and WASD both offer all the features expected in a modern Web package.
Of course the implementation and detail may differ but each is highly competitive in
offering a ‘full solution’.

Request ‘rewrite’, an Apache description for being able to modify request handling
and characteristics during processing, is paralleled in WASD'’s conditional mapping
and internal redirection facilities.

WASD offers full proxy serving (HTTP, SSL, CONNECT), with on-disk caching,
protocol tunneling and protocol gatewaying.

Both WASD and Apache are available for free download and available for use under
the GNU General Public License (GPL)

http://mww.gnu.org/licenses/gpl.txt

17

Platform Support
Apache WASD

Alpha Yes Yes
Itanium Yes Yes
VAX No Yes
V6.0 No Yes
V6.1 No Yes
V6.2 No Yes
V7.1 No Yes
V7.2 V1.3 Yes
V7.3 V2.1 Yes
V8.2 V2.1 Yes
F8.3 V2.1(?) Yes
Install ODS-2 V1.3 Yes
Install ODS-5 Mandatory V2.1 Yes

All of WASD features and facilities are available on all OpenVMS platforms for all
OpenVMS versions from V6.0 onwards.

The latest release of Apache tends to rely on recent tweaks and accommodations to
underlying run-time libraries, TCP/IP packages and even (so I'm led to believe)
kernel tweaks.

This obviously lends some weight to WASD'’s selection where sites cannot or will
not update hardware or O/S versions for whatever reasons.

18

Concurrent Serving

Apache WASD
Server Child Processes Single Process
Concurrency Per-Process* VMS AST
Multi-CPU Per-Process Multiple
Instances™>*
Scripting Per-Process or Detached
Subprocess Process

* To support 100 concurrent requests Apache requires a minimum of 101 processes.
** Multiple, per-CPU processes, cooperating via mutex and the DLM.

Apache, at least most of the current deployments, and certainly the OpenVMS
release, uses a request-per-process model. A supervisory process creates child
processes that are then managed through idle and request processing queues.
Each child process handles a single request. Multiple child processes are used for
request serving concurrency. This model is sometimes referred to as heavyweight-
threading.

Experimentation by the author has demonstrated something like a 10-15%
overhead in OpenVMS Apache process requirements under load. This presumably
IS managing a process into and out-of the idle and processing queues, and
associated overheads, within Apache. Hence to support 100 concurrent requests
Apache would require something like 115 instantiated processes (even to serve
static pages).

WASD uses a single process and ASTs to enable an event-driven (mainly I/O but
with some timer queue) multiple request concurrency. This model could be referred
to as lightweight-threading. These are very lightweight in the sense they are VMS’
native threading model, almost negligible servicing cost and certainly containing
none of the thread-management overhead of something like POSIX Threads or a
process context.

The WASD conservative approach to resource consumption in this respect is often
a significant factor in preference over other approaches.

19

F% HTTPd ccuma.sci.uma.es:80 ... Server Statistics - SWB 1.7-11
% File Edit View Gn Bookmarks Tools Window Help
Eﬁ‘k an’%ém F{él?ad S%Ep ‘& hitps:/deewniruma.esihittpdd-fadmindreport'stats A 2a_Search % -
7| 4} Home | wBookmarks ¢ Release Notes g Plug-ins ¢ Extensions ¢ Support (4 Mazilla Community
A
Request Processing
Connection Request HTTP
Total: 11778542 Total: 47648025 1.1: 34743583 (80%)
Current: 30 Current: 3 1.0: BZ71075 (20%)
Peak: B02 Peak: 177 0.9: 1318 (0%)
Busy: z Busy: 0
Persistent /Current: a5 Throttle /Queued: 0 Method
fPeak: 598 IProcessing: 0 CONNECT: o
Accepted: 11778540 Busy: 0% DELETE: 1]
Rejected: 0 Redirect /Local: 4625103 GET: 47065581
IPva: 11778542 (100%) /Remote: 103607 HEAD: 12365
IPvs: 0(0%) Persistent fTotal: 33543564 OPTIONS: 219526 J
SSL: BZ5883 (7%) IMax: 1024 POST: 260154
Total fRx: 20,721,796,586 Pipeline fTotal: 45471 PUT: (=]
fTx: 550,615,568,045 IMax: 78 TRACE: o
Error fRx: 74336 Mot From Cache: 1133812 Extension: i}
fx: 483057 Forbidden: 55357
Response
Duration nn: 81340
Min: 0000976 2nn: 23237181
Max: 01:0017 3nn: 17825067
Ave: 0349806 qnn: 1685289 /
] I -
F [k \Z E2) @@ | Done I Fo-[a

To sustain the 177 requests experienced by this site Apache (according to
observations by the author described in the previous slide) would have required a
minimum of approximately 200 Apache processes active on the system. This is the
case even if all requests were for static pages, while in such a case WASD would
have required just the single server process.

This image shows a portion of the Server Statistics report from the University of
Malaga site described in the Case Study section. Statistics are accumulated in a
permanent global section. A system startup or explicit action by the site
administrator is required to reset these.

The data are reasonably self-explanatory and can just be browsed.
Items of possible interest:

* Current network connections: 90 (these have largely persisted beyond the initial
request, see Persistent/Current)

* Current requests in progress: 3 (actively being processed)
*« HTTP/1.0: 20% (one fifth of all clients are still using this old protocol)

» Average duration: 349mS (on average a request is served in approximately one
third of a second)

* WASD HTTP/1.1 ‘pipelines’ requests quite well when possible, with a maximum of
79 reported for any one request sequence.

20

% HTTPd ccuma.sci.uma.es:80 ... Server Activity - SWB 1.7-11

b File Edit View Go Bookmarks Tools ‘Window Help

Eﬁ‘k an’%ém F{él?ad S%Ep ‘& hrlps:fMM.uma.es/hnpw‘—.v‘aumm/repUn/acIMIWZUUEUSTUEJ 2a_Search % -

7| 4} Home | wBookmarks ¢ Release Notes g Plug-ins ¢ Extensions ¢ Support (4 Mazilla Community

HTTPd ccuma.sci.uma.es:80
Server Activity (HTTPd:80)

Wednesday, 10-MAY-2006 16:26:14
3000 210 M
T T T T T T T

nnnnnnnn

0 s-mavosoo 10-mavossy O

Period: ‘Wednesday, 3-MAY-2006 06:00 to Wednesday, 10-hMAY-2006 05:59 (168 hours)
Requests: 5,721,088 total; 2,750 max; 270 peak
Bytes: 57,399,859,883 total, 210,683,340 max

(Dae awailible from Thursdsy, 13-4 P R-2006 00:00)

S EDb <2 B3 o | I =y

This image shows the WASD Server Activity report and graph from the University of
Malaga site described in the Case Study section. It is the busiest WASD site the
author has access to.

Server activity statistics suitable for generating the graph are accumulated in a
global section for a maximum of 28 days (this is a separate section to the server
statistics of the previous slide). This graph shows a 7 day period. Weekdays and
the weekend are quite obvious. Totals represent a per-minute accumulation.

During the week represented by the graph approximate 88 Ghytes have been
transferred as a result of 6.7 million requests. The maximum transferred in any one
minute was 211M bytes, or approximately 3.5M bytes per second (28Mbps). The
maximum number of requests (this would be better labeled connections) handled in
any one minute was 2750, or approximately 44 per second, with a peak of 270
connections concurrently processed.

21

F% HTTPd ccuma.sci.uma.es:80 ... Server Activity - SWB 1.7-11
b File Edit View Go Bookmarks Tools ‘Window Help

i - ’&' a %E ‘& hrlps:fMM.uma.es/hnpw‘—.v‘aumm/repUn/acIMIWZUUEUSTUEJ 2a_Search % -

Back Forward Reload Stop
7| 4} Home | wBookmarks ¢ Release Notes g Plug-ins ¢ Extensions ¢ Support (4 Mazilla Community

HTTPd ccuma.sci.uma.es:80
Server Activity (HTTPe:80)

Wednesday, 10-MAY-2006 16:26:51

3000 . 72 M
Requests] Bytes

fmean) - =

R
I il H“""Hm" i
i
i ...
w....mw || \ ||||IH\‘ B
0 a-msvosoo 10-mavossy O

Period: Tuesday 8-MAY-Z006 06:00 to ‘Wednesday, 10-MAY-2006 05:59 (24 hours)
Requests: 1,228,885 total; 2,439 max;, 253 peak
Bytes: 15,314,059,754 total, 72,657,901 max

(Dae awailible from Thursdsy, 13-4 P R-2006 00:00)

e &b 2 B3 B ‘ Done ‘I HDE‘[%

Activity graph showing a single twenty-four hour weekday period.

| can imagine | see the southern-European traditional period of siesta in the mid-
afternoon (and thoroughly civilized tradition | might add ©).

Authentication

Apache WASD
Package* ves ves
SYSUAF Module Yes
PK|** Module Yes
Custom*** ii€s lies

* package-specific username/password
** Public Key Infrastructure (X.509, etc.)
*** User-written authentication support

WASD natively supports credentials from a significant number of sources:
» the SYSUAF

* with or without VMS rights identifier possession

» the ACME services

* plain-text lists

* WASD-specific binary authentication databases

» X.509 client certificate

* RFC1413 (Identification Protocol)

« authorization agent (user-written CGlplus-based authenticator)

Scripting Support

Apache WASD
CGl Just* Yes
Perl Module RTE**
PHP Module RTE
Python Module RTE
Tomcat Module Reverse Proxy
Persistence Yes Yes

* Implied criticism of OpenVMS Apache performance
** RTE is a persistent Run-Time Environment

WASD supports all the major dynamic content environments available to OpenVMS
Apache.

CGlI performance under OpenVMS Apache is abysmal. There may be good reasons
for this but a glance at the CGI performance data in later slides lends itself to
‘abysmal’ not being too wild a description.

Both support ‘persistence’. This is a scripting characteristic rather than environment
that lends itself to great efficiencies. See the following slides for more detail.

24

Persistent Scripting

So what is ‘persistence’ then?

The ability of the server to reuse resources
(such as processes) over multiple requests

A scripting/interpretation engine retaining
it’s initialized state over multiple requests

It is generally recognized that the maintenance of application multi-user concurrency
through the use of discrete processes (sometimes referred to as heavyweight-
threading) and the required O/S process context switching, is an expensive
approach. Hence part of the impetus behind the more lightweight mechanisms
such as POSIX Threads where the concurrency is maintained within a single
process context.

Even in the Unix family of O/S, where the process is considered an expendable
resource, it is recognized that the creation of processes to respond to single,
particularly if short-lived, application demand, is a method that does not scale
effectively in time or resource consumption.

With OpenVMS the process is considered much more of a permanent resource and
is very much more expensive to create. Any ported application that relies on the
cost and behaviour of Unix style processes will not scale appropriately under
OpenVMS.

CGil scripting relies on creating a child process to service a single request. In
keeping with the above observations it does not scale particularly well.

In addition, if the script relies on an interpreter or other engine that requires
initialization, that will add further latency and CPU cycles.

25

Persistent Scripting
Why is ‘persistence’ so important?

Process activation expenses
— Latency
— CPU cycles

Scripting engine initialization
— Latency
— CPU cycles

Obviously if these activation expenses can be amortized over more then one usage
then the cost per instance is reduced proportionally.

If the scripting resource can be made persistent and multiple successive usage
managed the activation overhead may be absorbed almost completely.

26

Persistent Scripting

CGI paradigm is very expensive; solutions:

Apache
child processes
loadable modules

WASD
reusable detached processes
CGlplus
Run Time Environment (RTE)

The original approach to providing dynamic content not part of the underlying Web
server application was to run a script or executable in a child process and deliver
the output from that back to the client. This was (somewhat) formalized in the CGI
protocol and de facto standard.

To reduce the expense of this approach all server environments have needed to
accommodate resource persistence for commonly used dynamic content
environments — to make dynamic content using child processes the exception rather
than the rule.

Apache manages request concurrency using multiple child processes. Into these it
dynamically loads executable code (‘dynamic shared objects’, i.e. sharable images)
for configured dynamic resource providers. Common examples are Perl, PHP and
Python, but can be anything, including user-written modules. Each handles
multiple, consecutive requests, activating the appropriate code as required. CGl is
still a process-per-request paradigm.

WASD, faced with the same issues and a significantly more costly process creation,
required similar resource persistence. OpenVMS processes lend themselves to
reuse and so WASD goes one step further and generally maintains the process
between CGl usage. It also introduced a small variant on CGlI that allows scripts
and/or scripting engines themselves to persist over multiple requests. These are
known as CGlplus and Run-Time Environments (RTE).

27

WASD CGlplus

CGIl - plus lower latency
- plus greater throughput
- plus far less system impact

CGlplus eliminates the overhead associated with creating the script process and then
executing the image of a CGI script. It does this by allowing the script process and
optionally any associated image/application to remain instantiated between uses,
eliminating process and/or application startup overheads.

The script interface is still CGI, with all the usual environment variables and input/output
streams available, which means a new API does not need to be learned and existing
CGlI scripts are simple to modify.

RTE (implemented using CGlplus) is intended as an environment in which a script source
is interpreted or otherwise processed by the application. That is, for scripting
engines, although it is not limited to that. Perl, PHP and Python engines for WASD
are implemented using RTE. Start once - execute many.

CGlplus operates at two levels.
First, it manages reuse of processes.

It creates detached processes on demand, distributes them to an appropriate
request, activates the appropriate scripting application, transfers data to and
from the script and the client, manages the process while idle and finally
deletes a process when appropriate time periods expire. One process, many
CGl activations. This is completely transparent to the CGl script itself.

Secondly, it allows a scripting application to remain resident.

It creates a new or allocates an idle process and activates the scripting
application in that. That application then remains resident and prepared to
accept requests with very low latency. It loops from an idle state to active,
accepting the CGlI data from the server, performing required processing and
output, indicating end-of-response, and returning to an idle state. It's still
CGlI though, with some minor accommodations for persistence. It's not
uncommon for a CGlplus application to be ten times less latent than the
same application executed as standard CGI.

An RTE is essentially a remain-resident CGlplus application described above that is
an interpreter for other script sources supplied to it.

Performance

The test system was a lightly-loaded AlphaServer 4100 4/400 (4 x 400MHz
CPUs), OpenVMS V7.3-2 and DEC TCP/IP 5.4. No keep-alive functionality
was employed so each request required a complete TCP/IP connection and
disposal. DNS (name resolution) and access logging were disabled. The
server and test-bench utility (ApacheBench v1.3) were located on separate
systems with 100 Mbps Fast-Ethernet interconnection.

On clustered, multi-user systems too many things vary slightly all the time.
Hence the batching of accesses, interleaved between servers, attempting to
provide a representative result.

CSWS 1.3 (based on Apache 1.3.26)
WASD 9.0

Source: http://wasd.vsm.com.au/ht_root/doc/htd_2100.html

Indicative only - but instructive all the same.

29

Performance — 1 concurrent

O Apache

requests/second
w
=]
o

200+ B WASD
100+ I
0 4 -Jdr
. Static
Static OkB 64KB CGlI CGlplus Perl PHP
O Apache 34 32 4 - 15 32
@ WASD 521 102 24 254 60 58

source: http://wasd.vsm.com.au/ht_root/doc/htd_2100.html

Static OkB: File comprising zero bytes of content. Included to measure the
throughput of the entire network connection establishment, request acceptance,
resources access, response delivery, connection dissolution — without the overhead
of actually delivering any resource content.

Static 64kB: File containing sixty-five kilobytes of content. Same measurement as
above with the addition of multiple PDUSs to the client.

CGl: An executable that generates a CGI response header and variable quantities
of response content (according to activation parameters).

CGilplus: Same executable as CGI but persists between usages removing activation
latencies. Included here for comparison with WASD CGI performance and shows
approximately ten times greater throughput!
Perl: Persistent interpreter under both platforms running the following script

print "Content-Type: text/html\n\n

Hello!";
PHP: Persistent interpreter under both platforms running the following script

<?

php echo "Hellol*

?>

More information: http://wasd.vsm.com.au/ht_root/doc/htd/htd_2100.html

30

Performance — 10 concurrent

900~
800
700
2
S 600+
(5]
$ 500+
N
0
% 400+
e OApache x 1
o oty BWASD x 1
200 B Apache x 10
1004 B WASD x 10
o- e .:d..n:‘
Static | Static
OKB 64KB CGlI CGlplus| Perl PHP
O Apache x 1 34 32 4 = 15 32
BWASD x 1 521 102 24 254 60 58
B Apache x 10 38 32 5] - 29 57
BWASD x 10 831 134 21 95 108 140

source: http://wasd.vsm.com.au/ht_root/doc/htd_2100.html

The same performance results as described in the previous slide but this time with
results from ten concurrent requests added for comparison.

Obviously what works well under light load might behave differently and a heavier
one.

Case Studies

OpenVMS+WASD success stories

Case studies basically comprise three slides
1. Overview of site
2. Significant perceived advantages
3. Success stories always seem to have notable quotes ©

Of course there may be much more to an individual site decision than presented
here.

32

Case Study - Education

Universidad de Malaga - Spain

4 campuses; 19 faculties; 65 undergraduate courses;
3760 staff; 40,000 students

A significant user of OpenVMS for email, Web, database
and administration

Planning migration from OSU to Apache in late 2002
evaluation revealed show-stopping issue with Apache

“A second threat for [SSL certificate] key disclosure exists during script execution
because scripts run in the context of the server and have complete access to key
files no matter where they exist (as long as they exist in a directory accessible to
APACHE$WWW). Therefore, it is not advisable to allow the execution of arbitrary
user scripts when using SSL.” OpenVMS Apache Release Notes

University of Malaga, Spain (UMA).

As executing scripts under multiple accounts and having script authors not directly
responsible to the web service administration made the chance of inadvertent or
malicious SSL certificate exposure unacceptable. Subsequent to the deployment of
WASD selected students also have been permitted to provide active content (mainly
via PHP) further exacerbating this issue.

33

Case Study - Education

Universidad de Malaga - Spain

Evaluated WASD in early 2003 and put it into
production shortly after!

76 virtual servers
>1M requests and >15GB per weekday

>600 concurrent connections and >100 requests in-
progress routinely supported (using 2-30 processes)

X.509 based PKI authentication access control

Extensive deployment using PHP, along with existing
OSU scripts, and more recent CGl based applications

WASD supports a number of virtual servers limited only by practicality and available
resources. The number of servers offered within UMA has grown significantly since
moving to WASD.

It's not at all atypical for the site to process in excess of 6 million requests and 80
Gbytes of data over an academic week (see Server Activity graph taken from this
site in a previous slide). These quantities can double during periods of student
registration or result publication.

UMA is the most loaded site | have administrative access to and is included here to
illustrate, amongst other things, that WASD can handle significant loading elegantly
and efficiently.

WASD provides an OSU scripting emulation and allowed UMA to continue to use
it's extensive suite of applications developed during the period of OSU deployment
(I dislike the term ‘legacy’).

34

J% Universidad de Malaga - SWB 1.7-11
T Ele E# Miew Go Bookmarks Tools Window Help

R‘ﬁ?k 'r--:;: T n:%nl 1; |8 Mp:tvmuma. o J 2. Search pf‘f" T h!.‘)
© AhHome | wpBookmarks o Releate Notes 2 Plug-ins g# Extensions g Support (4 Mozilla Community
s 4 CONSTRUIMOS g
— building a future
enaisH [Commar = eires =] [wecin =

.] e oo P oo | 7]
W & Z | [

University of Malaga makes very extensive use of PHP to provide both it's content
navigation system and the dynamic, interactive components of it's Web services.
Even with much of it's content dynamically generated by this interpreted markup
language average request response time still remains about one third of a second.

The WASD PHP engine uses the CPQ AXPVMS CSWS_PHP V1.2 product
shareable image from a persistent RTE. This means the PHP engine only needs to
be initialized the once before handling multiple script requests - sometimes
thousands before becoming idle long enough for the server to consider removing it
from the system.

Checking the UMA system (it is the now weekend and late on a Saturday in Spain)

| find eleven of the instantiated PHP engines on the system running under five
different accounts. The number of scripts each one of these has been activated to
interpret are 6894, 6731, 6953, 3697, 4831, 4254, 2440, 2277, 2006, 1349, 276. |
have seen counts in excess of 25000. Obviously neither the OpenVMS Engineering
PHP sharable image nor the WASD PHP interface leaks too many resources ©

35

Case Study - Education
Universidad de Méalaga - Spain

“WASD has allowed us to build a very robust, and above all,
secure, web infrastructure, without having to give up twenty
years of VMS knowledge. For us, the strongest points of WASD
are excellent performance, excellent VMS security model
integration and unbeatable support.”

site: http://www.uma.es/

36

Case Study - Education

ESME-Sudria — France

Ecole d'Ingénieurs Généralistes
(College of Engineering)

= Automation

= Electronics

= Telecommunications

= Computer and Software Engineering

ESME-Sudria School of Engineering — Paris, France
This case study was a late addition to the session.

By kind invitation | visited the school in Paris on my way through to the 2006
OpenVMS Advanced Technical Bootcamp (yep, this one!) Although I have had a lot
of interaction with the CIO at ESME-Sudria over the last five years (many WASD
bugfixes and enhancements are due to the efforts of Jean-Pierre Petit) it took the
visit and a formal presentation on the uses this engineering school has put WASD
to for me to fully appreciate the clever and lateral thinking that has gone here to
produce elegant, simple and powerful functionality.

After the visit and presentation | considered the site a must-add for the Bootcamp
session. Certainly an OpenVMS+WASD success story!

37

Case Study - Education

ESME-Sudria — France

Internet
Intranet
Standard proxy
Reverse proxy
Gatewaying

With thanks to Jean-Pierre Petit | include a number of slides lifted directly from his
presentation and use them to illustrate just one aspect of their WASD usage —
proxying in it's various forms. These slides are in the original French language
(which | think just adds a certain exotique to we mainly English language audience
©).

The full Powerpoint presentation in the original French as well as an English
language version should be available (perhaps soon) from the WASD site:

http://wasd.vsm.com.au/other/

Stay tuned! | think | have convinced Jean-Pierre to find the time in an already
crowded schedule to submit an OpenVMS Technical Journal article on the Web
services provided at ESME-Sudria.

The following slides concentrate on the proxying aspects of WASD at ESME-Sudria
in the context of other general and intranet services.

Any errors or omissions are entirely mine.

38

Les services Web a 'ESME-Sudria

Proxy
WASD

NS
i II
/ 4

ESME-Sudria protects its’ internal resources via firewall and WASD proxy.
Much of it's content and resources are hosted on an internal OpenVMS cluster.
External and internal access is appropriately provided to these resources.

Serveurs Intranet

Site interne
| intranet.esme.fr

WASD

Many internal services are provided to the student population not only from their
desktop on campus but also at home (see later).

Also, and most interestingly, from a series of touch screens located around he
campus, are available daily class timetables, room allocations, other timetabling
information, student photographs, and other services.

VMS and WASD feature as technical content in a number of courses, either as that
or supporting application development using a number of environments including
Python. WASD persona scripting allows such Web applications to be developed
and run under a student’s own account.

40

Proxy standard d’acces a Internet

ESME-Sudria makes extensive use of WASD standard proxy and proxy disk-
caching to improve responsiveness and reduce bandwidth consumption when
accessing resources external to the school.

Proxy caching on disk is supported on a RAID 0 set to improve proxy disk 1/0O
performance.

WASD request processing configuration (i.e. rewrite) is used to dynamically
suppress advertisement and other unwanted material during external access.

41

Reverse proxy HTTP

A

73/
iy
\ é % Site public VA 3
www.esme.fr [fe—>
WASD
Reverse I
Proxy
WASD

4

The resources of the public site are hosted on the internal cluster and made
accessable via the proxy system using reverse-proxy (external to internal). This
offers a measure of protection to the internal resources and allows failover and load
sharing to be performed on the internal systems.

Reverse proxy HTTPS

A

73/
iy
\ § % Site interne VA S
intranet.esme.fr (f——~>
WASD
Reverse I
Proxy
WASD

The ability of WASD proxy to gateway between Web protocols is used to provide
secure access to some internal resources. The external client can connect to the
WASD proxy using SSL which can then use standard HTTP or FTP to access the
resource across the internal network. It can also proxy SSL to SSL (this is different
to CONNECT proxy support).

Resources hosted on internal systems, including the primary VMS cluster, as well
as other non-VMS systems (e.g. 1IS) are accessed via WASD reverse proxy. This
provides a measure of protection and even access control, with authentication and
access control to these internal services being provided via WASD from SYSUAF
credentials resident on internal systems.

43

DNS wildcard proxy

Site externe
bibliographique

An innovative application of WASD proxy allows students off-campus to continue to
have access to external research materials (e.g. on-line library and other research
facilities) that require access from the ESME-Sudria network (i.e. from an ESME-
Sudria IP address).

A client external to the campus requests from the proxy server system (but not as a
proxy request — which I'll grant you sounds a little confusing at first) a certain URI.
This URI is recognised by WASD as a request for one of these external sites and it
transparently accesses the resource from the remote site (using the ESME-Sudria
host as the source) and returns it to the external client.

44

Case Study - Education

ESME-Sudria — France

“WASD has enabled us to webify more and more applications and
develop brand new ones with excellent performances. CGl+ has
provided us with applications that responds in a tenth of a
second ... A lot of features are in use at ESME-Sudria: web
servers, proxy, reverse proxy, DNS wildcards proxy... Even some
11S server are protected by authorization through a WASD
reverse proxy, giving to VMS the ability to allow single sign-on to
different platforms.”

site: http://www.esme.fr/

45

Case Study - Finance

Coast Capital Savings - Canada

Coast Capital Savings is a credit union servicing 300,000
customers in the Lower Mainland and southern Vancouver
Island regions of British Columbia, Canada. Coast Capital
Savings banking system runs on OpenVMS AlphaServers and
is written in Greystone Technology M (M).

WASD is principally used as an application server (middleware)
for integrating traditional ‘green-screen’ financial database
application with Windows-based (.NET) applications.

The XML-SOAP-RPC mechanism implemented for this serves
approximately 1500 interactive workstations, as well as a
busy customer-facing IVR system.

For significant detail on this case study see the OpenVMS Technical Journal V7
article “WASD in SOAP/XML Transaction-Oriented Environments

http://h71000.www7.hp.com/openvms/journal/v7/wasd.html

Case Study - Finance

Coast Capital Savings - Canada

— Ease of integration

CGI or CGlplus programming in DCL, Python, MUMPS, C, etc.

— VMS security mechanisms
persona scripting and particular account contexts
— Performance

persistent CGlplus provides a low-latency (few milliseconds)
high throughput transaction infrastructure

— Application management

load-balancing, throttling, script process rundown allowing
‘gentle’ application/server shutdown and/or system
migration

a7

Case Study - Finance

Coast Capital Savings - Canada

“WASD came bundled with a friendly gentleman in Australia who
appears to be online 24x7 ... also appears to read all the latest

specs, to do tons of testing, and keep pushing WASD forward ...

makes WASD worth it's weight in platinum.”

more information: http://h71000.www?7.hp.com/openvms/journal/v7/wasd.html

48

Case Study - Telecommunications

EDS Telco Solutions Group - Australia

Developed by EDS on behalf of an Australian telecommunications
carrier providing landline, cell phone and Internet services. Due
to Commercial-in-Confidence considerations, the customer
cannot be identified.

Service Profile data includes billing, product information, discounts,
promotions, and mobile features information.

To permit existing corporate systems and middleware to exchange
Service Profile information, web services technologies based on
XML, SOAP 1.1, and HTTP were employed. These enable the
exchange of XML encapsulated information to and from retailers,
OpenVMS applications and the GSM network hardware.

For significant detail on this case study see the OpenVMS Technical Journal V7
article “WASD in SOAP/XML Transaction-Oriented Environments”

http://h71000.www7.hp.com/openvms/journal/v7/wasd.html

49

Case Study - Telecommunications

EDS Telco Solutions Group - Australia

— Available for VAX platform
some remaining systems required consideration
— CGlplus persistent scripting
eliminate per-request process creation on busy systems
allow database context(s) to remain instantiated
— Script process termination
WASD issues $FORCEX before shutting-down idle scripts
allows exit handlers to elegantly release database context(s)
— Monitoring and troubleshooting
server statistics, WATCH facility, WOTSUP utility

50

Case Study - Telecommunications

EDS Telco Solutions Group - Australia

“Truth be known, | put my choice behind Apache initially due to the
number of developers out there ... then | found out that WASD was
developed specifically for VMS ... an OpenVMS solution. I'm glad my
decision on choosing Apache was not adhered to because WASD has
proved a very good choice indeed. WASD ... is cluster-aware ...
synergic with the OpenVMS OS’s philosophy and design. WASD
developer(s) and community are helpful and very responsive.

Because it simply kicks-arse!”

more information: http://h71000.www?7.hp.com/openvms/journal/v7/wasd.html

Translation into American English: “kicks-ass”.

51

Info-WASD Poll

These are lists distilled from respondent
comments to the mailing list poll where some
particular WASD attribute was of particular
significance in the package preference.

Notes derived from the poll of the info-WASD mailing list on 25" Feb 2006:

“As you can see from the abstract the intent of the session is to highlight those characteristics of
WASD that result in the choice of it over alternatives (though it is intended to be in comparison to
Apache the same reasons might apply to other platforms). | am not wanting to script your responses
but the reasons can be as simple and obvious as 'l need to run it on VAX'/'on VMS V7.1, or for
complex technical reasons ('VMS Apache's security model is broken' springs to mind :-), stability,
performance, scripting, 'philosophical’, etc.

Over the years | have had enough contact with many sites to be able to reconstruct the session
based on comments made in this forum and privately. Of course the environment for these sorts of
Web services has changed enormously over the last decade and significantly in the last few years
with the advent of Apache on VMS so | would like to present a fresh, accurate and up-to-date
perspective. | would appreciate (all) your input and comments you might consider relevant to the
topic, either via info-WASD or privately (just make sure you put 'bootcamp’ in the subject line so | can
find you easily in the SPAM quarantine).

| will collate these and draw the session from them. Common themes will be discussed with
explanations of any underlying technical detail (e.g. persistent scripting). Significant sites with specific
requirements will be used as case-studies (with permission of course), either by name or
anonymously (identified by market sector perhaps).

Here's your chance to have your say and be present (by proxy if not physically) at the premier
OpenVMS event of the year!”

52

Poll - Differentiators

VMS Integration
— AST event driven model
— OPCOM
— SYSUAF
— ACME
— DLM
— Mailboxes
— Cluster ‘awareness’

These ‘differentiator’ slides try to list the attributes closely integrated with VMS or
that are VMS-specific that poll respondents have expressed as elements that
contribute to their choice of WASD in preference to Apache.

53

T Elle Eot Yiew Go [Dookmarks Tooks Window el

. T - ; P T—] = -
T L P | & vt ko a0% ComMitpal-radmind ﬂ g oarch| Sh hp
T qhHome wfBookmarks g Release Notes g Fiug-ins o Exensions g Support (4 Moaiila Community

HTTPd freja.kednos.com:80

Server Administration

Configuration
| Heport | Revise | Action |

Server St Site=Log) [Edit) [Zern]
Configuration] [Eile] [Edit)
Bervices [Eile] [Edit]
Messages] [File] [Server] [File] [Esit)

Path Mapping Server] [Flle] [Edit]) [Felnad]

Path Authorization [Server] [Eile] [Edif] [Reload]

User Authentication [Senver] [HIA] HIL] [Purge)

Secure Sockets [Service] [Ca] [Edit-Ca] [Felead-CA]
[Cache] [DCL] [DECnet] [Hast] [Lock] [hateh)]

Other Aeports [Process] [Proey] [Feguest] [Sys
72, 168, 336, 50

(L2 4816247

Contrel Wadenaday,
o 19 e
Log [On] [Off] [Elush] Tissms FREIA: 31 30474517

Cache [On] [Off] [Purge Precess: 31 20828638
Prowy [Ad o) g 1 27N
| . cP: 0000 iTa
nstance [ma e : o
Wi ®
Byes o 3EISAES
T VRS
Hode & Cluster ©
FRELAHITPAB0 HAFRER HTIPOBO
FRELAHTTPa 50
GO HTTPa B
WORNG: HTTFa 80
e = o2 L2 @ | Done T ==Y

Note the ‘cluster-awareness’ demonstrated by this single node. The three other
instances of WASD running on three other systems in the cluster are shown in the
bottom right of the administration page. By selecting the ‘code’ or ‘cluster’ radio
selector any of the server-control functions available from this page can be applied
to this instance alone or to all instances in the cluster.

WASD is aware of, and interacts with, other WASD instances running on the same
system and other systems in a cluster using the Distributed Lock Manager (DLM).

This slide also illustrates the primary Server Administration on-line, menu-driven
server access and control interface.

54

Poll - Differentiators

Performance
— AST event driven
— Single process model
— Conservative resource consumption
— Scripting

55

Poll - Differentiators

Monitoring and Administration
— WATCH
— Server configuration (loaded)
— WATCH
— Server statistics
— WATCH
— $HTTPD/DO=<something>[/CLUSTER]
— WATCH

WATCH is mentioned as a strong differentiator time and time and time again.

So what is it?

56

Poll - Differentiators

WATCH ...

provides an online, real-time, in-browser-window view of request
processing in the running server. The ability to observe live
request processing on an ad hoc basis, without changing server
configuration or shutting-down/restarting the server process,
makes this facility a great configuration, problem resolution and
application development tool.

WATCH executive summary.

57

% HTTPd slim.vsm.com.au:80 .. WATCH Report - SWB 1.7-11

v5Ei|e Edit View Go Bookmarks Tools MWindow Help

B?c‘k - Fnﬁ’ard - R:%ad S%nip |$ hitpsthurasd vem com.aufhttpe/- fadmindtep oW ATCH J &2 Search % -

v: 4} Home | whBaokmarks g Release Notes ##Plug-ins ¢ Extensions ¢ Support £ Mazilla Community

HTTPd slim.vsm.com.au:80
WATCH Report
Saturday, 23-APR-2006 07:09:27

Select WATCH Criteria

Reguest General MNetwork Proxy

[+ Processing [Connection [Activity [~ Processing

[* Header [~ mapping [~ Data ™ Request Header
™ Body [~ Authorization Other ™ Request Body
Response [+ Errar [~ match [Response Header
[+ Processing [CGl ™ Logging [Pesponse Body
I™ Header I” DCL ™ 550 I™ Cache

I~ Body [~ DEChet ™ Timer [T Cache Maintenance

Client Filter
Service Filter
Path/Track Filter

60 | or Seconds Duration
™ Include (™ only) in Server Process Log

W ATCH reset

% &b % E3) <& | Done M Fo-[=]a

WATCH is arguably the single most useful WASD tool available to site
administrators and web developers alike and was reported a valuable adjunct during
development of this EDS solution.

It provides an online, real-time, in-browser-window view of request processing in the
running server. The ability to observe live request processing on an ad hoc basis,
without changing server configuration or shutting-down/restarting the server

process, makes this facility a great configuration and problem resolution tool. It
allows (amongst other uses)

» assessment of mapping rules

» assessment of authorization rules

* investigation of request processing problems

* observation of script interaction

* general observation of server behaviour
This slide shows the item selection menu.

Various elements and levels of detail in request processing can be selected
according to requirement. Filters allow selection of specific requests against
characteristics (for live servers) reducing the quantity of data provided.

Hitting the [WATCH] button produces the report illustrated on the next slide.

i swB 1.7-11 O[]
v5F|Ie Edit View Go Bookmarks Tools MWindow Help

. w ‘A ittps-turasd #httpct/- /admindreporywATCH? Search| =F -
5Back Forward — Reload Stnp |$ pe:Aurast.vsm Com AUMTRd- fadminrepo rq;J earc Print m

: T GhHome | whBookmarks g Release Motes g Flug-ins g2 Extensions ¢ Support 4 Mozilla Community

29-APR-2086 87:23:36 WATCH REFORT slim.vsm.com.ou:d@

HTTPA-WASD/9.1.4 OpenVMS/AKP SSL (24-APR-2086 B7:27:57.11)

Hultinet UCKSTPC_SHR V4dA-H1 (H9-JUN-2004 12:55:27.47)

OpenssL 8,9.6 B9 Jul 2085 (7-0UL-2005 22:07:08.66)

$ CC (¥7.3/68490808) /DECC /STAND=RELAXED ANSI /PREFIX=ALL /OPTIMIIE /MODEBUS /MWARNIMG= (NOINFORM ,DISABLE={PREOPTH)}/FLOAT=D_FLOAT /
COMPAQ AlphaServer DS1AL 466 MH with 1 CPU and 512MB running WHS %7.3 (ODS-5 encbled, YMS MAML, ¥MS FIB, ILIE 1.2.2, lksbsb_valblk|
4 HTTPD /PRIORITY=4 /SYSUAF=(SSL,RELAXED)/ PERSONA/ SCRIFT=AS=HTTP4NOBIDY

AST:1992/28A8 BI0:1995/2088 BYT: 16525@/'499424 DI0:1880/1088 EN]:319/508 FIL:257/389 PGFL:304912/50900A PRC:G/108 T0:97/108

DCL Scripting: detached, /script=as=HTTPSNOBODY, PERSOMA enabled

Process: HTTPd:8@ OTHER HT_ROOT: [STRETUP]STRETUP SERWER.COM;1 HT_ROOT : [LOG_SERVER]SLIM_2AR5AT13154432 .L0G; 1

Instonces: SLIDER::HTTPd:8@, SLIM::HTTPd:5@

Wutchmg cuﬂnect reuuest req- heuder response, error (539)

Client: Serwice: "' Poth:

| Time. |Module__ IL1ne\Item|Entegnru_\Event .

187:23:55.52 NET 1584 @BE1 COMNECT WULTIHOME match for 158.161.13. 15,443 arrived ot 158.181.13.13,443|
|87:23:55.52 NET 1569 @AAT COMNECT ACCEPTED 2@3.122.208.7,62879 on https /7158.181.13.15,443 BG13: |

|87:23:55.55 REQUEST 27A3 MAR] REQ-HEADER HERDER 538 butes|

GET Jcgi-bin/soynoil/ 718 HTTRA1.1

Host: on.level7.net.qu

User-pgent: Hozilla/S.8 (x11; U; OpenvMS Digital_Personal_WorkStation ; en-Us; rw:1.7.11) Gecko/20050524
Accept: text/uml,opplication/sml,application/shiml+xml, text/hinl ;0=0.9, text/plain;o=R.6, inage/png,+* ;0=8.5
Accept-Longuage: en-us,en;q=R.5

Accept-Encoding: gzip,deflate

Accept-Charsets ISO-8859-1,utf-8;0=0.7,+;0=0.7

Keep-Alive: 388

Cormection: keep-a

Referer: https: //on level7 net. uufcm bm/soumull/

Authorization:

|87:23:55.55 REQUEST 3631 MBA] REMQ-HEADER 1@ fields, A unknoun|

197:23:55.55 SERYICE 1553 BBET CONMECT YIRTUAL on.lewel7.net.qu:dd3|

|W7:23:55.50 REQUEST 3742 WBA1 REOUEST GET /cgi-bin/soynail/ ™14

187:23:55.55 DCL 1296 BR8] RESPONSE SCRIPT os HTTPSHOBODY CGI /ci-hin/soumail CGI-BIN: [MAARBAISOVMATL O
|A7:23:55.64 GITP @O6@ AAA1 RESPONSE DEFLATE no, script requested resporse NOT to be GETPed|

|87:23:55.65 REQUEST B767 BBB] REQUEST STATUS 280 rx:74d +x:553 butes B.125955 seconds|

187:23:55.65 REQUEST B992 BBB1 CONNECT PERSISTENT | 2M3.122.288.7,62879

-1 J

=
e &b oF (X oF ‘ Transferring data from wasd.v¥sm.com.au M—l }=-<D=|"d\[§

This slide displays an example WATCH report.

WATCH reports are a valuable adjunct to configuration and server troubleshooting
and are often provided by users of WASD during problem analysis and resolution.

Each report begins with a section describing the server software, it's hardware and
software environment, it's startup parameters, and other information relevant to
troubleshooting.

After that is a series of event point reports. These are time-stamped, have the
source module name and line number, a unigue WATCH number so that events can
be related to specific requests in progress, and then some event information. This
is intended to provide an indication of the status of that item at that stage in the
processing. The event point may provide further data in free-form related to the
processing.

In the example above the prologue section can be seen terminated by the request
event header

|Time |[Module__ JLine]ltem]|Category__ |Event...

after which a network connection can be seen being accepted, the HTTP request
header seen to be displayed, and then a script being activated as one of a number
of major points in responding to the request.

59

Poll - Differentiators

Scripting
— Performance
— IPC based on mailboxes
— CLI activation and DCL symbols
— CGlplus / RTE
— Persona
— CGI response header directives
— OSU emulation

60

Poll - Differentiators

Proxy
— Standard proxy
— Reverse proxy
— Tunneling
— Disk cache model and implementation

61

Poll - Testimonials

“l have stayed with WASD because | like the product ... Apache
would have to be very much better than WASD ... and | don’t
see that happening, ever.”

“WASD just ran from the FREEWARE CD copy ... Besides it was also
a fast server which hardly needs significant attention. It is well
designed (IMHO) and sports a huge number of interfaces ...”

“Back in the beginning of the century [©] we were faced to the
necessity of making a lot applications available through the web.
Most were based on the VMS security model. The ability to to
run scripts under the user’s persona ...”

“WASD has been performing very well in our demanding
conditions. It is even resilient enough to keep serving pages
even when there was a hideous bug [®] that killed some server
processes, thus keeping us up. We couldn't be happier with the
software and with the excellent mood of its author.”

These ‘testimonials’ have been culled from responses to my poll on the info-WASD
mailing list requesting input for this session (see extract on earlier slide notes).
Some responses were long (much, much too long for these slides) while others
were short and sweet. | have attempted to put a representative smattering of
comments from the contributors. Those posted publicly can be found in the info-
WASD archives

http://wasd.vsm.com.au/ht_root/other/info-WASD.html
Some were supplied privately.
They are, necessarily, personal opinions (but no less valuable for being that).

Some are from those where English is not their first language. | have not presumed
to ‘correct’ these for grammar or syntax. The sentiments need no correction.

Thanks to all those who contributed and may recognize their words immortalized
herein!

62

Poll - Testimonials

“Although | have not used HP support for Apache, | have found
that HP support for other HP-ported products (Kerberos, SSH,
COM, etc.) to be a little difficult to obtain (‘Uh, do we support
that product?’) ... rather than ‘Here is how you do it, sorry my
docs weren’t clear’ or ‘I will build that into the next release’...”

“I found the experience to be easy, and the support
(documentation and mailing list) to be far superior to any other
of the webservers.”

“WASD comes into the scene. It had the needed reverse proxy
feature that made possible a connection to a Tomcat server (or
to any other protected server) and had an excellent privilege
separation model. We ported our configuration and, in record
time, we had a test system running, that let us move quickly
into production.”

63

Poll - Testimonials

“[VAX 6000 running VMS 6.0] ... we have been the ‘low-end
hardware/software’ beta test site ... not that you would notice.
WASD'’s betas are arguably more stable than other people’s
production releases.”

.. there is the best in class support that comes from the southern
hemisphere. The kind of support you dream of ... you find a
problem, send a mail, go to bed and, when you wake up in the
morning, there is a cute [©] answer!”

“Can’t improve on all the responses, but in terse terms ... VMS
integration, security, performance, extensibility, reliability,
support. Use Apache? ... Haven't used it under VMS, but have
under Tru64 and it is cumbersome by comparison.”

64

Rumination

WASD: why is it chosen when
there’s OpenVMS Apache?

Let’'s chew-over what has been presented in this session.

65

Rumination

WASD does everything Apache does
WASD CGI + CGlplus/RTE persistence
WASD performance

WASD conservative resource usage
WASD/OpenVMS integration

WASD tools — e.g. WATCH

WASD reliability

WASD support

And ... no, the repeated presence of the string “WASD” on this slide is not an effort
at subliminal persuasion through logo repetition ©

66

Rumination

WASD: why ... ?
“Because it simply kicks-arse!”

67

Rumination

WASD: why ... ?
“Because it simply kicks-ass!”

And a translation for the USA portion of the audience.

68

Demonstration?

Find me during the Bootcamp.
+61 407 883422

We'll sit down at an Internet kiosk and
spend some time at WASD sites large and
small.

Want to know more about WATCH? Ditto!

Where to get it?
http://wasd.vsm.com.au/wasd/

69

70

