The LDAP API defines various data structures which are used to pass information to and from a client application. Some of these structures are opaque; that is, their internal layout is not visible to a client application. In such cases, the API may return a pointer to such a structure, but the only use of such a pointer to a client application is as a parameter to subsequent library calls. Some structures are public. Their contents are defined by the API, and client applications may allocate and manipulate such structures or use them as parameters to LDAP functions. All data structures used by the API are defined with "natural" alignment; that is, each member of a data structure will be aligned on an address boundary appropriate to its type. Opaque Data Structures The following data structures are opaque. Applications should not make any assumptions about the contents or size of such data structures. typedef struct ldap LDAP; typedef struct ldapmsg LDAPMessage; typedef struct berelement BerElement; Public Data Structures The following data structures are described in the IETF documents relating to the LDAP API, and definitions are provided for them in LDAP.H. Applications may allocate and manipulate such structures, as well as use them in calls to the LDAP API. typedef struct berval { .. } BerValue; typedef struct ldapapiinfo { .. } LDAPAPIInfo; typedef struct ldap_apifeature_info { .. } LDAPAPIFeatureInfo; typedef struct ldapcontrol { .. } LDAPControl; typedef struct ldapmod { .. } LDAPMod; Note that the pointer size in effect at compilation time determines the layout of data structures, which themselves contain pointer fields. Since all of the public data structures listed here contain one or more pointers, their size and layout will differ depending on the pointer size. For example, in the case of the structure berval, the API provides the following definition: struct berval { ber_len_t bv_len; char *bv_val; } BerValue; (where ber_len_t is equivalent on OpenVMS to an unsigned 32-bit integer). The following code would therefore work correctly regardless of pointer size: #include <ldap.h> . . . char *buff; BerValue val; . . . buff = (char *)malloc(255); . . . val.bv_len = 255; val.bv_val = buff; . . .