Library /sys$common/syshlp/LSE$CLIHELP.HLB  —  SCA Topics, Getting Started, Using C
    This section contains some basic examples that illustrate what
    SCA can do to help you with your programs. The examples have very
    little explanation. If you want a more detailed explanation of the
    underlying concepts, see the Basic_Query_Concepts help topic. The
    remainder of this section is written in terms that are specific to
    C programs.

    If you want to follow along and try the examples, you will need to
    have an SCA library available. If you do not know how to create
    an SCA library, read the Building_An_SCA_Library help topic. The
    examples use generic variable names (such as i). You will have to
    substitute variable names that actually exist in your code when
    trying the examples.

    The first example is the easiest query: It lets you find all the
    items in your SCA library named i, and shows you all the places
    where they appear (all occurrences of i).

    FIND i

    You can search for any name in this manner, including using
    wildcard characters (for example, FIND i*).

    Now let's say you are looking for an occurrence, and you know
    that it occurs in a particular file. The following query finds all
    occurrences of items that are named i but will then limit them to
    those which happen to occur in the file named 'PROG.C'.

    FIND i AND FILE_SPEC="PROG.C"

    Another typical question one might ask is "Find all the places
    where this item is assigned to (or read from, called, declared,and
    so forth)." The next example finds all occurrences of items that
    are named i, but then limits them to only those occurrences where
    i is assigned a value.

    FIND i AND OCCURRENCE=WRITE

    (SCA understands many occurrence classes other then WRITE. See the
    help subtopics under Getting_Started for tables containing all the
    SCA attributes and their corresponding meanings in C.)

    Often, you only want to know where (in what file or module) a
    particular function is, so that you can go to it and edit it.
    You could use the first query (where i would be the name of the
    function) and then look through the output. The output would
    include all occurrences of the function, one of which would be
    its definition, which you could then select. Or, you could ask SCA
    to limit the search for you by typing the following query:

    FIND i AND OCCURRENCE=PRIMARY

    In SCA terms, a primary declaration is the most significant
    declaration of an item. For a C function, this means the function
    definition. This is in contrast to a C function declaration
    (for example, extern i()), which in SCA terms is an associated
    declaration.

    Another problem you might have is that there are many different
    items in your system having a given name. Some may be variables;
    others may be functions, #define  constants, macros, and so forth.
    Suppose you want to find only the functions named i. Again, the
    query FIND i would give you what you wanted, but it would also
    give you much more. It is preferable to issue the following query:

    FIND i AND SYMBOL_CLASS=FUNCTION

    The last four examples have all selected information based on two
    attributes. The last example selected information based on a name
    attribute (in this case, i) and a symbol class attribute (in this
    case, FUNCTION). Note how the attributes are combined using the
    boolean operator AND. In general, you can select items out of your
    library based on any combination of attributes, using AND as well
    as the other logical operators OR, XOR and NOT.

    The next example shows another primary feature of SCA - the
    ability to display relationships between items. The example
    given here shows the most common use of this feature. It finds
    the complete call tree (that is, all functions called directly and
    indirectly), of the function named i.

    FIND CALLED_BY (i, DEPTH=ALL)

    If you want to limit the depth of the call tree, you can replace
    the keyword ALL by any positive integer.

    The final part of this section describes how to go directly to the
    source code once you have issued a query. After issuing the query
    FIND i, for example, you can have an LSE query buffer containing
    something that looks like the following:

      i variable
          C_MODULE\60     variable definition declaration
          C_MODULE\75     write reference
          C_MODULE\79     read reference
          C_MODULE\95     read, write reference
          C_MODULE\122    read reference
          C_MODULE\144    write reference
          C_MODULE\146    read reference
          C_MODULE\149    write reference
          C_MODULE\149    read reference
          C_MODULE\150    read reference
          C_MODULE\166    read reference

    The first two lines of this display will be highlighted. The first
    line represents the item you looked for (i), and the rest of the
    lines represent the different places in the code where this item
    occurred (that is, the occurrences of i). By using the up and down
    arrows on your keyboard, or by clicking on an occurrence with your
    mouse, you can choose the occurrence you want to see. Then all
    you have to do is type CTRL/G (the keyboard equivalent of the GOTO
    SOURCE command), and LSE will bring the source file into a buffer
    and position you at the occurrence you chose.

    To obtain help on the following topics, request help as indicated.

    o  For help on query language, see the Basic_Query_Concepts help
       topic.

    o  For help on libraries, see the Building_An_SCA_Library help
       topic.
Close Help