The first call to this routine by any thread in a process with a given once_control will call the specified routine with no arguments. Subsequent calls to pthread_once() with the same once_ control will not call the routine. On return from pthread_once(), it is guaranteed that the routine has completed. For example, a mutex or a per-thread context key must be created exactly once. Calling pthread_once() ensures that the initialization is serialized across multiple threads. Other threads that reach the same point in the code would be delayed until the first thread is finished. NOTE If you specify a routine that directly or indirectly results in a recursive call to pthread_once() and that specifies the same routine argument, the recursive call can result in a deadlock. To initialize the once_control record, your program can zero out the entire structure, or you can use the PTHREAD_ONCE_INIT macro, which is defined in the pthread.h header file, to statically initialize that structure. If using PTHREAD_ONCE_INIT, declare the once_control record as follows: pthread_once_t once_control = PTHREAD_ONCE_INIT; Note that it is often easier to simply lock a statically initialized mutex, check a control flag, and perform necessary initialization (in-line) rather than using pthread_once(). For example, you can code an initialization routine that begins with the following basic logic: init() { static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static int flag = FALSE; pthread_mutex_lock(&mutex); if(!flag) { /* initialization code goes here */ flag = TRUE; } pthread_mutex_unlock(&mutex); }