Deletes a range of addresses from a process's virtual address space. Upon successful completion of the service, the deleted pages are inaccessible, and references to them cause access violations. Format SYS$DELTVA inadr ,[retadr] ,[acmode] C Prototype int sys$deltva (struct _va_range *inadr, struct _va_range *retadr, unsigned int acmode);
1 – Arguments
inadr OpenVMS usage:address_range type: longword (unsigned) access: read only mechanism: by reference Starting and ending virtual addresses of the pages to be deleted. The inadr argument is the address of a 2-longword array containing, in order, the starting and ending process virtual addresses. If the starting and ending virtual addresses are the same, a single page is deleted. The addresses are adjusted up or down to fall on CPU-specific page boundaries. Only the virtual page number portion of each virtual address is used; the low- order byte-within-page bits are ignored. The $DELTVA service deletes pages starting at the address contained in the second longword of the inadr argument and ending at the address in the first longword. Thus, if you use the same address array for both the Create Virtual Address Space ($CRETVA) and the $DELTVA services, the pages are deleted in the reverse order from which they were created. retadr OpenVMS usage:address_range type: longword (unsigned) access: write only mechanism: by reference Starting and ending process virtual addresses of the pages that $DELTVA has deleted. The retadr argument is the address of a 2-longword array containing, in order, the starting and ending process virtual addresses. acmode OpenVMS usage:access_mode type: longword (unsigned) access: read only mechanism: by value Access mode on behalf of which the service is to be performed. The acmode argument is a longword containing the access mode. The most privileged access mode used is the access mode of the caller. The calling process can delete pages only if those pages are owned by an access mode equal to or less privileged than the access mode of the calling process.