Invokes the MACRO-32 Compiler for OpenVMS I64 to compile one or more VAX MACRO assembly language source files into native OpenVMS I64 object code. Format MACRO/MIGRATION filespec[+...] NOTE For OpenVMS I64, the MACRO command defaults to /MIGRATION.
1 – Parameters
filespec[+...] Specifies a VAX MACRO assembly language source file to be compiled. If you specify more than one file, separate the file specifications with plus signs (+). File specifications separated by plus signs are concatenated into one input file and produce a single object file and, if indicated, a listing file. NOTE Unlike the VAX assembler, the MACRO compiler does not support the creation of separate object files when the source files are separated by a comma (,). You cannot include a wildcard character in a file specification. For each file specification, the compiler command supplies a default file type of MAR. The compiler creates output files of one version higher than the highest version existing in the target directory.
2 – Description
The qualifiers to the MACRO/MIGRATION command serve as either command (global) qualifiers or positional qualifiers. A command qualifier affects all the files specified in the command. A positional qualifier affects only the file that it qualifies. All MACRO/MIGRATION qualifiers except /LIBRARY are usable as either command or positional qualifiers. The /LIBRARY qualifier is a positional qualifier only. Many of the qualifiers take one or more arguments. If you specify only one argument, you can omit the parentheses. The compiler supports most of the standard MACRO qualifiers. Some of these qualifiers have additional options unique to the compiler and some of them are missing one or more VAX MACRO options. The compiler also supports several qualifiers unique to the compiler. All of these qualifiers are shown in the following table: Standard MACRO Qualifiers Unique Qualifiers /DEBUG (with additional options) /FLAG /DIAGNOSTICS /MACHINE /DISABLE (with additional options) /OPTIMIZE /ENABLE (with additional options) /PRESERVE /LIBRARY /RETRY_COUNT /LIST /SYMBOLS /OBJECT /TIE /SHOW /UNALIGNED /WARN
3 – Qualifiers
3.1 /DEBUG
/DEBUG=(option[,...]) /NODEBUG Includes or excludes local symbols in the symbol table or traceback information in the object module. You can specify one or more of the following options: Option Description ALL Makes local symbols and traceback information in the object module available to the debugger. This qualifier is equivalent to /ENABLE=(DEBUG,TRACEBACK). NONE Makes local symbols and traceback information in the object module unavailable to the debugger. This qualifier is equivalent to /DISABLE=(DEBUG,TRACEBACK). SYMBOLS Makes all local symbols in the object module available and all traceback information unavailable to the debugger. This qualifier is equivalent to /ENABLE=SYMBOLS. TRACEBACK Makes traceback information in the object module available and local symbols unavailable to the debugger. This qualifier is equivalent to /ENABLE=TRACEBACK. The default value for /DEBUG is ALL. The /DEBUG qualifier overrides /ENABLE=(DEBUG,TRACEBACK) or /DISABLE=(DEBUG,TRACEBACK), regardless of their order on the command line. NOTE Debugging can be simplified by specifying /NOOPTIMIZE. This qualifier prevents the movement of generated code across source line boundaries. For more information about debugging, see the OpenVMS Debugger Manual.
3.2 /DIAGNOSTICS
/DIAGNOSTICS[=filespec] /NODIAGNOSTICS (default) Creates a file containing assembler messages and diagnostic information. If you omit the file specification, the default file name is the same as the source program; the default file type is DIA. No wildcard characters are allowed in the file specification. The diagnostics file is reserved for use with layered products, such as the VAX Language-Sensitive Editor (LSE).
3.3 /DISABLE
/DISABLE=(option[,...]) /NODISABLE Provides initial settings for the compiler functions that can be controlled by the .DISABLE and .ENABLE MACRO directives. You can specify one or more of the following functions: Option Description DEBUG Excludes local symbol table information in the object file for use with the debugger. If the /DEBUG qualifier is also specified, it overrides /DISABLE=(DEBUG,TRACEBACK) or /ENABLE=(DEBUG,TRACEBACK), regardless of their order on the command line. FLAGGING Deactivates compiler flagging. GLOBAL Disables the assumption that undefined symbols are external symbols. OVERFLOW Deactivates production of overflow trap code for the following opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx, MNEGx, MULx, CVTxy, (where x is greater than y, for example CVTLB), AOBxx, ACBL, and SOBxx. QUADWORD Disables support for quadword literal and address expressions. SUPPRESSION Prevents the listing of unreferenced symbols in the symbol table. TRACEBACK Disables the provision of traceback information to the debugger. If the /DEBUG qualifier is also specified, it overrides /DISABLE=(DEBUG,TRACEBACK) or /ENABLE=(DEBUG,TRACEBACK), regardless of their order on the command line. By default, at compiler activation, FLAGGING, GLOBAL, and SUPPRESSION are enabled, and DEBUG, OVERFLOW, QUADWORD, and TRACEBACK are disabled. The /NODISABLE qualifier has the same effect as omitting the /DISABLE qualifier. It can also be used to negate the effects of any /DISABLE qualifiers specified earlier in the command line. NOTE If /DISABLE is used two or more times in the command line, the last /DISABLE will override all previous uses of /DISABLE. The options not specified in the final /DISABLE will revert to their default values. Furthermore, if /ENABLE and /DISABLE are used in the same command line for the same option, /DISABLE will always prevail, regardless of its position in the command line. Workaround: If you want to disable two or more options, specify them in the following way: /DISABLE=(xxxx, yyyy)
3.4 /ENABLE
/ENABLE=(option[,...]) /NOENABLE Provides initial settings for the compiler functions that can be controlled by the .DISABLE and .ENABLE MACRO directives. You can specify one or more of the following functions: Option Description DEBUG Includes local symbol table information in the object file for use with the debugger. If the /DEBUG qualifier is also specified, it overrides /ENABLE=(DEBUG,TRACEBACK) or /DISABLE=(DEBUG,TRACEBACK), regardless of their order on the command line. FLAGGING Activates compiler flagging. GLOBAL Assumes undefined symbols are external symbols. OVERFLOW Activates production of overflow trap code for the following opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx, MNEGx, MULx, CVTxy (where x is greater than y, for example CVTLB), AOBxx, ACBL, and SOBxx. QUADWORD Provides support for quadword literal and address expressions. SUPPRESSION Provides listing of unreferenced symbols in the symbol table. TRACEBACK Provides traceback information to the debugger. If the /DEBUG qualifier is also specified, it overrides /ENABLE=(DEBUG,TRACEBACK) or /DISABLE=(DEBUG,TRACEBACK), regardless of their order on the command line. By default, at compiler activation, FLAGGING, GLOBAL, TRACEBACK, and SUPPRESSION are enabled, and DEBUG, OVERFLOW, and QUADWORD are disabled. The /NOENABLE qualifier has the same effect as not specifying the /ENABLE qualifier. It can also be used to negate the effects of any /ENABLE qualifiers specified earlier in the command line. NOTE For every option of the /ENABLE qualifier, if /ENABLE and /DISABLE are used in the same command line for the same option, /DISABLE will always prevail, regardless of its position in the command line. You may want to enable an option previously disabled through the use of a symbol. For example, you may have incorporated the following frequently used options into the DCL symbol MAC, as follows: MAC::== MACRO/MIGRATION/NOTIE/DISABLE=FLAGGING To enable FLAGGING using the symbol MAC, issue the following command: $ MAC /NODISABLE/ENABLE=FLAGGING
3.5 /FLAG
/FLAG=(option[,...]) /NOFLAG Specifies which classes of informational messages the compiler reports. The options are: Option Description ALIGNMENT Reports unaligned stack and memory references. ALL Enables all options. ARGLIST Reports that the argument list has been homed. BAD_FIELD_ Reports BBC/BBS instructions that attempt to use USAGE bits beyond 31. (I64 only) CODEGEN Reports run-time code generation, such as self- modifying code. COMPILER_ Prints compiler version to SYS$ERROR. VERSION (I64 only) DIRECTIVES Reports unsupported directives. HINTS Reports input/output/auto-preserved register hints. INDIRECT_ Reports CALLS/CALLG instructions that have an CALLS indirect target and are not preceded by a .USE_ (I64 only) LINKAGE directive. INDIRECT_JSB Reports JSB instructions that have an indirect (I64 only) target and are not preceded by a .USE_LINKAGE directive. INSTRUCTIONS Reports instructions that use absolute addresses that might compile correctly, but should be examined anyway, because the desired absolute address might be different on the system. JUMPS Reports branches between routines. LINKAGE Reports linkage information provided to the (I64 only) OpenVMS linker. NONE Disables all options. STACK Reports all messages caused by user stack manipulation. At compiler activation, the default is /FLAG=(ALIGNMENT, ARGLIST, CODEGEN, DIRECTIVES, INSTRUCTIONS, JUMPS, STACK). NOTE Use of the /NOFLAG and /FLAG qualifiers together to activate a specific subset of cross-compiler messages does not work as expected. When used together, as in /NOFLAG/FLAG=(keyword,keyword), instead of activating only the messages specified by the keywords, all cross-compiler messages are activated. However, use of /FLAG=(none,keyword) activates only those messages specified by the keyword. Note that specifying /NOFLAG or /FLAG=NONE does not disable the reporting of coding constructs that would prevent a successful compilation. The compiler continues to report code that you must change, such as an up-level stack reference.
3.6 /LIBRARY
/LIBRARY /NOLIBRARY Positional qualifier. The associated input file to the /LIBRARY qualifier must be a macro library. The default file type is MLB. The /NOLIBRARY qualifier has the same effect as not specifying the /LIBRARY qualifier, or negates the effects of any /LIBRARY qualifiers specified earlier in the command line. The compiler can search up to 16 libraries, one of which is always STARLET.MLB. This number applies to a particular compilation, not necessarily to a particular MACRO command. If you enter the MACRO command so that more than one source file is compiled, but the source files are compiled separately, you can specify up to 16 macro libraries for each separate compilation. More than one macro library in a compilation causes the libraries to be searched in reverse order of their specification. A macro call in a source program causes the compiler to begin the following sequence of searches if the macro is undefined: 1. The libraries specified with the .LIBRARY directive are searched first, in reverse order of the order in which they were declared. 2. If the macro definition is not found in any of the libraries specified with the .LIBRARY directive, a search of the libraries specified in the MACRO command line (in the reverse order in which they were specified). 3. If the macro definition is not found in any of the libraries specified in the command line, a search of STARLET.MLB.
3.7 /LIST
/LIST[=filespec] /NOLIST Creates or omits an output listing, and optionally provides an output file specification for it. The default file type for the listing file is LIS. No wildcard characters are allowed in the file specification. An interactive MACRO command does not produce a listing file by default. The /NOLIST qualifier, present either explicitly or by default, causes errors to be reported on the current output device. The /LIST qualifier is the default for a MACRO command in a batch job. The /LIST qualifier allows you to control the defaults applied to the output file specification by the placement of the qualifier in the command line.
3.8 /MACHINE
/MACHINE /NOMACHINE (default) Enables machine code listing, if it and the /LIST qualifier are both specified in the command line.
3.9 /OBJECT
/OBJECT[=filespec] /NOOBJECT Creates or omits an object module. It also defines the file specification. By default, the compiler creates an object module with the same file name as the first input file. The default file type for object files is OBJ. No wildcard characters are allowed in the file specification. The /OBJECT qualifier controls the defaults applied to the output file specification by the placement of the qualifier in the command line.
3.10 /OPTIMIZE
/OPTIMIZE[=(option[,...])] /NOOPTIMIZE Enables or disables optimization options. All options are enabled by default except VAXREGS. The options are: Option Description [NO]PEEPHOLE Peephole optimization [NO]SCHEDULE Code scheduling [NO]ADDRESSES Common base address loading [NO]REFERENCES Common data referencing ALL All optimizations NONE No optimizations
3.11 /PRESERVE
/PRESERVE[=(option[,...])] /NOPRESERVE (default) Directs the compiler to generate special OpenVMS Alpha or OpenVMS I64 code throughout a module for all VAX MACRO instructions that rely on VAX guarantees of operation atomicity or granularity. The options are: Option Description GRANULARITY Preserves the rules of VAX granularity of writes. Specifying /PRESERVE=GRANULARITY causes the compiler to use Alpha Load-locked and Store- conditional instruction sequences or the Itanium compare-exchange (cmpxchg) instruction in code it generates for VAX instructions that perform byte, word, or unaligned longword writes. ATOMICITY Preserves atomicity of VAX modify operations. Specifying /PRESERVE=ATOMICITY causes the compiler to use Alpha Load-locked and Store- conditional instruction sequences or the Itanium compare-exchange (cmpxchg) instruction in code it generates for VAX instructions with modify operands. /PRESERVE and /PRESERVE=(GRANULARITY,ATOMICITY) are equivalent. When preservation of both granularity and atomicity is enabled, and the compiler encounters a VAX coding construct that requires both granularity and atomicity guarantees, it enforces atomicity over granularity. If you are aware of specific sections of VAX MACRO code that require VAX granularity and atomicity guarantees, you may not need the compiler to enforce these guarantees for the entire module. Instead, you can use the .PRESERVE and .NOPRESERVE directives to apply the guarantees only to those sections. Because the compiler does not need to generate expanded code for the entire module, these these directives can help optimize the code. Atomicity is guaranteed on multiprocessing systems as well as uniprocessing systems when you specify /PRESERVE=ATOMICITY. When the /PRESERVE qualifier is present, you can control the number of times compiler-generated code retries a granular or atomic update by specifying the /RETRY_COUNT qualifier. WARNING If /PRESERVE=ATOMICITY is turned on, any unaligned data references will result in a fatal reserved operand fault. If /PRESERVE=GRANULARITY is turned on, unaligned word references to addresses assumed aligned will also cause a fatal reserved operand fault.
3.12 /RETRY_COUNT
/RETRY_COUNT=count Specifies to the compiler the number of times the following operations should be performed in generated code: o Retries of operations performed in source by a VAX interlocked instruction o Retries of atomic or granular updates if the /PRESERVE qualifier or .PRESERVE directive is present If the /RETRY_COUNT qualifier is not present, the compiler generates code that performs an infinite number of retries of these operations.
3.13 /SHOW
/SHOW[=(function[,...])] /NOSHOW[=(function[,...])] Provides initial settings for the functions controlled by the compiler directives .SHOW and .NOSHOW. You can specify one or more of the following functions: Option Description CONDITIONALS Lists unsatisfied conditional code associated with .IF and .ENDC MACRO directives. CALLS Lists macro calls and repeat range expansions. DEFINITIONS Lists macro definitions. EXPANSIONS Lists macro expansions. BINARY Lists binary code generated by the expansion of macro calls.
3.14 /SYMBOLS
/SYMBOLS /NOSYMBOLS (default) Generates a symbol table and psect synopsis table for the listing file if it and the /LIST qualifier are both specified in the command line.
3.15 /TIE
/TIE /NOTIE (default) Ensures that proper external callouts are generated for translated images. Translated images are images that were translated with the DECMigrate (also known as VEST) facility. The Translated Image Environment (TIE) allows translated images to execute as if on an OpenVMS VAX system. Use /NOTIE for better performance if you do not make calls to translated images.
3.16 /UNALIGNED
/UNALIGNED /NOUNALIGNED (default) Forces the compiler to use unaligned loads and stores for all register-based memory references (except those that are FP-based or SP-based or are references to local aligned static data). By default, the compiler assumes that addresses in registers used as base pointers (except those that are FP-based or SP-based) are longword-aligned at routine entry, and generates code to load BYTE, WORD, and LONG data accordingly. This can result in run- time alignment faults, with significant performance impact, if the assumption is incorrect. Specifying /UNALIGNED causes the compiler to generate code assuming pointers are unaligned. This code is significantly larger, but is more efficient than handling an alignment fault. NOTE The compiler does not track quadword register alignment. For quadword memory references (such as in VAX MOVQ instructions), the compiler assumes the base address is quadword aligned, unless it has determined the address may not be longword-aligned in its register tracking code. Quadword references in OpenVMS Alpha and OpenVMS I64 built- in uses are always assumed to be quadword aligned. Since these must be in new code, the data should be properly aligned. The /UNALIGNED qualifier is generally appropriate only for modules where data is often unaligned, but which are not sufficiently performance sensitive to merit the correction of the data alignment in the source.
3.17 /WARN
/WARN=[[option]...] /NOWARN Turns off all informational level or warning level messages. Both are on by default. The options are: Option Description INFO Turns on all informational level messages NOINFO Turns off all informational level messages WARN Turns on all informational and warning level messages NOWARN Turns off all informational and warning level messages
4 – VAX MACRO Assembler Directives
The MACRO Compiler for OpenVMS Systems supports most of the standard VAX MACRO assembler directives discussed in the VAX MACRO and Instruction Set Reference Manual. However, some directives that are supported by the VAX MACRO assembler do not make sense for compiled code. Consequently, the compiler flags them and continues execution. You can disable the flagging of these directives by specifying /NOFLAG=DIRECTIVES. The directives that you can disable are: o .ENABLE and .DISABLE ABSOLUTE-for forcing absolute addressing modes o .ENABLE and .DISABLE TRUNCATION-for enabling floating point truncation o .LINK-for specifying linker options in a linker options file o .DEFAULT-for setting displacement lengths o .OPDEF and .REFn-for defining opcodes o Alignment directives (.ALIGN, .EVEN, and .ODD) in code psects o .TRANSFER o .MASK NOTE The length of the argument to a .ASCID directive is limited to 996 characters when using the MACRO Compiler for OpenVMS Systems. No such restriction exists in the VAX MACRO Assembler.
5 – MACRO Compiler Directives
You can use certain arguments to these directives to indicate register sets. You express a register set by listing the registers, separated by commas, within angle brackets. For example: <R1,R2,R3> If only one register is in the set, no angle brackets are needed. For example: R1
5.1 – .BRANCH LIKELY
Instructs the compiler that the following branch will likely be taken. Format .BRANCH_LIKELY There are no parameters for this directive.
5.1.1 – Description
The Alpha hardware predicts that forward conditional branches are not taken and that backwards conditional branches are taken. Based on the Alpha architecture, those assumptions are built into the compiler and influences the code generated for conditional branches. When .BRANCH_LIKELY precedes a forward conditional branch, the compiler will change the conditional branch and reorder the code such that the unlikely path will be a forward branch instead of the likely branch. The Itanium architecture includes branch prediction explicitly on each branch instruction. However, the compiler will still reorder the code to conform to the assumption that forward branches are not taken and backward branches are taken. The compiler will set the branch prediction flags as appropriate.
5.1.2 – Example
MOVL (R0),R1 .BRANCH_LIKELY BNEQ 10$ . . . 10$ The compiler will move the code between the BNEQ instruction and label 10$ to the end of the module, and change the BNEQ 10$ to a BEQL to the moved code. It will then continue immediately following the BEQL instruction with generation of the code starting at label 10$.
5.2 – .BRANCH UNLIKELY
Instructs the compiler that the following branch will likely not be taken. Therefore, the compiler generates code that incorporates that assumption. Format .BRANCH_UNLIKELY There are no parameters for this directive.
5.2.1 – Description
See the description of the .BRANCH_LIKELY directive for the assumptions used by the compiler when predicting branches. On OpenVMS I64 systems, when .BRANCH_UNLIKELY precedes a conditional backwards branch, the compiler will use the appropriate branch prediction flags on the generated Itanium instruction. .BRANCH_UNLIKELY has no effect if it precedes a conditional forwards branch.
5.2.2 – Example
MOVL #QUEUE,R0 ;Get queue header 10$: MOVL (R0),R0 ;Get entry from queue BEQL 20$ ;Forward branch assumed unlikely . . ;Process queue entry . TSTL (R0) ;More than one entry (known to be unlikely) .BRANCH_UNLIKELY BNEQ 10$ ;This branch made into forward 20$: ;conditional branch The .BRANCH_UNLIKELY directive is used here because the Alpha hardware would predict a backward branch to 10$ as likely to be taken. The programmer knows it is a rare case, so the directive is used to change the branch to a forward branch, which is predicted not taken.
5.3 – .CALL ENTRY
Declares the entry point of a called routine to the compiler. This entry declaration will save and restore the full 64 bits of any registers (except R0 and R1) that are modified by the routine and are not declared as scratch or output. Format .CALL_ENTRY [max_args=number] [,home_args=TRUE|FALSE] [,quad_args=TRUE|FALSE] [,input] [,output] [,scratch] [,preserve] [,label]
5.3.1 – Parameters
max_args=number Maximum number of arguments the called procedure expects. The compiler uses this value as the number of longwords it allocates in the fixed temporary region of the stack frame, if the argument list must be homed. If homing is not necessary, the max_args count is not required. The compiler flags procedure entry points, where max_args has not been specified, that require homed argument lists. Note that, for .CALL_ENTRY routines in which max_args exceeds 14, the compiler uses the received argument count, or max_args, whichever is smaller, when homing the argument list. home_args=TRUE|FALSE Indication to the compiler that the called procedure's argument list should or should not be homed. The home_args argument overrides the compiler's default logic for determining the circumstances under which an argument list must be homed. quad_args=TRUE|FALSE Indication to the compiler that the called procedure's argument list will have quadword references. input=<> Register set that indicates those registers from which the routine receives input values. This register set informs the compiler that the registers specified have meaningful values at routine entry and are unavailable for use as temporary registers even before the first compiler-detected use of the registers. Specifying registers in this register set affects compiler temporary register usage in this case: o If you are explicitly using any of the Alpha or Itanium registers (R13 and above). In either of these cases, if you do not specify a register that is being used as input in the input argument, the compiler may use the register as a temporary register, corrupting the input value. This register set has no effect on the compiler's default register preservation behavior. output=<> Register set that indicates those registers to which the routine assigns values that are returned to the routine's caller. Registers included in this register set are not saved and restored by the compiler, even if they are modified by the routine. This register set also informs the compiler that the registers specified have meaningful values at routine exit and are unavailable for use as temporary registers even after the last compiler-detected use of the registers. Specifying registers in this register set affects compiler temporary register usage in this case: o If you are explicitly using any of the Alpha or Itanium registers (R13 and above). In either of these cases, if you do not specify a register that is being used as output in the output argument, the compiler may use the register as a temporary register, corrupting the output value. scratch=<> Register set that indicates registers that are used within the routine but which should not be saved and restored at routine entry and exit. The caller of the routine does not expect to receive output values nor does it expect the registers to be preserved. Registers included in this register set are not saved and restored by the compiler, even if they are modified by the routine. On OpenVMS I64 systems, the compiler will not use these registers as temporary registers. preserve=<> Register set that indicates those registers that should be preserved over the routine call. This should include only those registers that are modified and whose full 64-bit contents should be saved and restored. This register set causes registers to be preserved whether or not they would have been preserved automatically by the compiler. Note that because R0 and R1 are scratch registers, by calling standard definition, the compiler never saves and restores them unless you specify them in this register set. Registers R16 and above are not allowed. This register set overrides the output and scratch register sets. If you specify a register both in the preserve register set and in the output or scratch register sets, the compiler will report the warning: %AMAC-W-REGDECCON, register declaration conflict in routine A label=name Optionally specify a label as in a VAX MACRO .ENTRY directive. This can be used if a module is to be common between OpenVMS VAX and OpenVMS Alpha or OpenVMS I64, if the OpenVMS VAX version needs to reference the entry with a .MASK directive, and if the OpenVMS Alpha or OpenVMS I64 version needs to use one or more of the special .CALL_ENTRY parameters. When the label parameter is specified and the symbol VAX is defined, an .ENTRY directive is used. If the symbol VAX is not defined, it creates the label and does a normal .CALL_ENTRY. Note that label is not the first parameter. Therefore, you cannot simply replace .ENTRY with .CALL_ENTRY. You must use the label parameter declaration.
5.4 – .CALL LINKAGE
OpenVMS I64 only. Associates a named or anonymous linkage with a routine name. When the compiler sees a CALLS, CALLG, JSB, BSBB, or BSBW instruction with the routine name as the target, it will use the associated linkage to decide which registers need to be saved and restored around the call. Format .CALL_LINKAGE routine_name [,linkage_name] [,input] [,output] [,scratch] [,preserve]
5.4.1 – Parameters
routine_name The name of a routine to be associated with the linkage. linkage_name = The name of a linkage previously defined with the .DEFINE_LINKAGE directive. If you specify a linkage_name, you cannot specify an input, output, scratch, or preserve parameter. input=<> Register set that indicates those registers from which the routine_name receives input values. This parameter is for documentation purposes only. If you specify an input register set, you cannot specify a linkage_name. output=<> Register set that indicates those registers to which the routine_ name assigns values that are returned to the routine's caller. Registers included in this register set are not saved and restored around the call. If you specify an output register set, you cannot specify a linkage_name. scratch=<> Register set that indicates registers that are used within the routine. If you specify a scratch register set, you cannot specify a linkage_name. preserve=<> Register set that indicates those registers which the routine_ name will preserve. Registers included in this register set are not saved and restored around a call to the routine, since the called routine will perform that task. If you specify a preserve register set, you cannot specify a linkage_name.
5.5 – .DEFINE LINKAGE
OpenVMS I64 only. Defines a named linkage that can be used with subsequent .CALL_ LINKAGE or .USE_LINKAGE directives. Format .DEFINE_LINKAGE linkage_name [,input] [,output] [,scratch] [,preserve]
5.5.1 – Parameters
linkage_name The name of a linkage to be defined. input=<> Register set that indicates those registers from which a routine with this linkage receives input values. This parameter is for documentation purposes only. output=<> Register set that indicates those registers to which a routine with this linkage assigns values that are returned to the routine's caller. Registers included in this register set are not saved and restored around the call. scratch=<> Register set that indicates registers that are used within a routine with this linkage. This parameter is for documentation purposes only. preserve=<> Register set that indicates those registers which a routine with this linkage will preserve. Registers included in this register set are not saved and restored around a call to the routine, since the called routine will perform that task.
5.6 – .DISABLE
Disables compiler features over a range of source code. Format .DISABLE argument-list
5.6.1 – Parameters
argument-list You can use one or more of the symbolic arguments listed in the following table: Option Description DEBUG Excludes local symbol table information in the object file for use with the debugger. FLAGGING Deactivates compiler flagging. GLOBAL Disables the assumption that undefined symbols are external symbols. OVERFLOW Deactivates production of overflow trap code for the following opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx, MNEGx, MULx, CVTxy (where x is greater than y, for example CVTLB), AOBxx, ACBL, and SOBxx. QUADWORD Disables support for quadword literal and address expressions. SUPPRESSION Stops the listing of unreferenced symbols in the symbol table. TRACEBACK Stops providing traceback information to the debugger.
5.7 – .ENABLE
Enables compiler features over a range of source code. Format .ENABLE argument-list
5.7.1 – Parameters
argument-list You can use one or more of the symbolic arguments listed in the following table: Option Description DEBUG Includes local symbol table information in the object file for use with the debugger. For this to take effect, you must compile with /DEBUG or /ENABLE=DEBUG. FLAGGING Activates compiler flagging. GLOBAL Assumes undefined symbols are external symbols. OVERFLOW Activates production of overflow trap code for the following opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx, MNEGx, MULx, CVTxy (where x is greater than y, for example CVTLB), AOBxx, ACBL, and SOBxx. QUADWORD Provides support for quadword literal and address expressions. SUPPRESSION Provides a listing of unreferenced symbols in the symbol table. TRACEBACK Provides traceback information to the debugger. For this to take effect, you must compile with /DEBUG or /ENABLE=TRACEBACK.
5.8 – .GLOBAL LABEL
Declares a global label in a routine that is not an entry point to the routine. Format Label: .GLOBAL_LABEL There are no parameters for this directive.
5.8.1 – Description
The .GLOBAL_LABEL directive declares a global label within a routine that is not a routine entry point. Unless declared with .GLOBAL_LABEL, global labels in code (specified with "::") are assumed to be entry point labels, which require declaration. If they are not declared, they are flagged as errors. The compiler also allows the address of a global label to be stored (for instance, by means of PUSHAL instruction). (The compiler flags as an error any attempt to store a label that has not been declared as a global label or an entry point.) By using the .GLOBAL_LABEL directive, you are acknowledging that the stored code address will not be the target of a CALL or JSB instruction. Global labels must appear inside routine boundaries. Labels declared with the .GLOBAL_LABEL directive can be used as the newpc argument in calls to the $UNWIND (Unwind Call Stack) system service because it allows the address of the label to be stored. However, there is no provision in the compiler to automatically adjust the stack pointer at such labels to remove arguments passed on the stack or compensate for stack alignment. If the call stack is unwound back to an alternate PC in the calling routine, the stack may still contain arguments and alignment bytes, and any stack-based references that expect this adjustment to the caller's original stack depth (which happened automatically on VAX) will be incorrect. Code that contains labels declared with this directive that are to be used as alternate PC targets for $UNWIND must be examined carefully to ensure correct behavior, with particular emphasis on any references based on the stack pointer.
5.9 – .JSB ENTRY
Declares the entry point of a JSB routine to the compiler. This entry declaration will save and restore the full 64 bits of any registers (except R0 and R1) that are modified by the routine and are not declared as scratch or output. See also .JSB32_ENTRY. Format .JSB_ENTRY [input] [,output] [,scratch] [,preserve]
5.9.1 – Parameters
input=<> Register set that indicates those registers from which the routine receives input values. This register set informs the compiler that the registers specified have meaningful values at routine entry and are unavailable for use as temporary registers even before the first compiler-detected use of the registers. Specifying registers in this register set affects compiler temporary register usage in this case: o If you are explicitly using any of the Alpha or Itanium registers (R13 and above). In either of these cases, if you do not specify a register that is being used as input in the input argument, the compiler may use the register as a temporary register, corrupting the input value. This register set has no effect on the compiler's default register preservation behavior. If you are not using the VAXREGS optimization switch or any of the Alpha registers, the input mask is used only to document your routine. output=<> Register set that indicates those registers to which the routine assigns values that are returned to the routine's caller. Registers included in this register set are not saved and restored by the compiler, even if they are modified by the routine. This register set also informs the compiler that the registers specified have meaningful values at routine exit and are unavailable for use as temporary registers even after the last compiler-detected use of the registers. Specifying registers in this register set affects compiler temporary register usage in this case: o If you are explicitly using any of the Alpha or Itanium registers (R13 and above). In either of these cases, if you do not specify a register that is being used as output in the output argument, the compiler may use the register as a temporary register, corrupting the output value. scratch=<> Register set that indicates registers that are used within the routine but which should not be saved and restored at routine entry and exit. The caller of the routine does not expect to receive output values nor does it expect the registers to be preserved. Registers included in this register set are not saved and restored by the compiler, even if they are modified by the routine. On OpenVMS I64 systems, the compiler will not use these registers as temporary registers. preserve=<> Register set that indicates those registers that should be preserved over the routine call. This should include only those registers that are modified and whose full 64-bit contents should be saved and restored. This register set causes registers to be preserved whether or not they would have been preserved automatically by the compiler. Note that because R0 and R1 are scratch registers, by calling standard definition, the compiler never saves and restores them unless you specify them in this register set. This register set overrides the output and scratch register sets. If you specify a register both in the preserve register set and in the output or scratch register sets, the compiler will report the following warning: %AMAC-W-REGDECCON, register declaration conflict in routine A
5.10 – .JSB32 ENTRY
Declares the entry point of a JSB routine to the compiler. This directive does not preserve any VAX register values (R2 through R12) unless the PRESERVE parameter is specified. The routine itself may save and restore registers by pushing them on the stack, but this will not preserve the upper 32 bits of the registers. See also .JSB_ENTRY. WARNING The .JSB32_ENTRY directive can be a great time-saver if you are sure that you can use it. If you use .JSB32_ENTRY in a situation where the upper 32 bits of a register are being used, it may cause very obscure and difficult-to-track bugs by corrupting a 64-bit value that may be several calling levels above the offending routine. .JSB32_ENTRY should never be used in an AST routine, condition handler, or any other code that can be executed asynchronously. Format .JSB32_ENTRY [input] [,output] [,scratch] [,preserve]
5.10.1 – Parameters
input=<> Register set that indicates those registers from which the routine receives input values. For the .JSB32_ENTRY directive, this register set is used only to document your code. output=<> Register set that indicates those registers to which the routine assigns values that are returned to the routine's caller. For the .JSB32_ENTRY directive, this register set is used only to document your code. scratch=<> Register set that indicates registers that are used within the routine but which should not be saved and restored at routine entry and exit. The caller of the routine does not expect to receive output values nor does it expect the registers to be preserved. Because R2 through R12 are not preserved by default, their inclusion in the scratch is for documentation purposes only. preserve=<> Register set that indicates those registers that should be preserved over the routine call. This should include only those registers that are modified and whose full 64-bit contents should be saved and restored. This register set causes registers to be preserved by the compiler. By default, no registers are preserved by the .JSB32_ ENTRY directive. This register set overrides the output and scratch register sets. If you specify a register both in the preserve register set and in the output or scratch register sets, the compiler will report the warning: %AMAC-W-REGDECCON, register declaration conflict in routine A
5.10.2 – Description
The .JSB32_ENTRY directive is an alternative way of declaring a JSB entry point. It is designed to streamline the declaration of VAX MACRO routines that operate within a well-defined, bounded application environment, such as that of a single application or a self-contained subsystem. For any routine declared with the .JSB32_ENTRY directive, the compiler does not automatically save or restore any VAX registers (R2 through R12), therefore leaving the current 32-bit operation untouched. When you use the .JSB32_ ENTRY directive to declare a JSB entry point, you are responsible for declaring and saving registers which must be preserved. If the externally visible entry points of a subsystem can be called from the 64-bit environment, those entry points should not be declared with .JSB32_ENTRY. Instead, .JSB_ENTRY (or .CALL_ ENTRY) should be used so that the full 64-bit register values are saved, if necessary.
5.11 – .PRESERVE
Directs the compiler to generate special OpenVMS Alpha or OpenVMS I64 code throughout a module for all VAX MACRO instructions that rely on VAX guarantees of operation atomicity or granularity. Format .[NO]PRESERVE argument-list
5.11.1 – Parameters
argument-list One or more of the symbolic arguments listed in the following table: Option Description GRANULARITY Preserves the rules of VAX granularity of writes. Specifying .PRESERVE=GRANULARITY causes the compiler to use Alpha Load-locked and Store- conditional instruction sequences or the Itanium compare-exchange (cmpxchg) instruction in code it generates for VAX instructions that perform byte, word, or unaligned longword writes. ATOMICITY Preserves atomicity of VAX modify operations. Specifying .PRESERVE=ATOMICITY causes the compiler to use Alpha Load-locked and Store- conditional instruction sequences or the Itanium compare-exchange (cmpxchg) instruction in code it generates for VAX instructions with modify operands.
5.11.2 – Description
The .PRESERVE and .NOPRESERVE directives cause the compiler to generate special Alpha assembly code for VAX MACRO instructions, within portions of the source module, that rely on VAX guarantees of operation atomicity or granularity. Use of .PRESERVE or .NOPRESERVE without specifying GRANULARITY or ATOMICITY will affect both options. When preservation of both granularity and atomicity is enabled, and the compiler encounters a VAX coding construct that requires both granularity and atomicity guarantees, it enforces atomicity over granularity. Alternatively, you can use the /PRESERVE and /NOPRESERVE compiler qualifiers to affect the atomicity and granularity in generated code throughout an entire MACRO source module, though this is not recommended, because the overhead of the extra code where it is not needed can slow the program down considerably. Atomicity is guaranteed for multiprocessing systems as well as uniprocessing systems when you specify .PRESERVE ATOMICITY. When the .PRESERVE directive is present, you can use the /RETRY_ COUNT qualifier on the command line to control the number of times the compiler-generated code retries a granular or atomic update. WARNING If .PRESERVE ATOMICITY is turned on, any unaligned data references will result in a fatal reserved operand fault. If .PRESERVE GRANULARITY is turned on, unaligned word references to addresses assumed aligned will also cause a fatal reserved operand fault.
5.11.3 – Example
INCW 1(R0) This instruction, when compiled with .PRESERVE GRANULARITY, retries the insertion of the new word value, if it is interrupted. However, when compiled with .PRESERVE ATOMICITY, it will also refetch the initial value and increment it, if interrupted. If both options are specified, it will do the latter.
5.12 – .SET REGISTERS
This directive allows you to override the compiler's alignment assumptions, and also allows implicit reads/writes of registers to be declared. Format .SET_REGISTERS argument-list
5.12.1 – Parameters
argument-list One or more of the arguments listed in the following table. For each argument, you can specify one or more registers: Option Description aligned=<> Declares one or more registers to be aligned on longword boundaries. unaligned=<> Declares one or more registers to be unaligned. Because this is an explicit declaration, this unaligned condition will not produce a fault at run time. read=<> Declares one or more registers, which otherwise the compiler could not detect as input registers, to be read. written=<> Declares one or more registers, which otherwise the compiler could not detect as output registers, to be written to.
5.12.2 – Description
The aligned and unaligned qualifiers to this directive allow you to override the compiler's alignment assumptions. Using the directive for this purpose in certain cases can produce more efficient code. The read and written qualifiers to this directive allow implicit reads and writes of registers to be declared. They are generally used to declare the register usage of called routines and are useful for documenting your program. With one exception, the .SET_REGISTERS directive remains in effect (ensuring proper alignment processing) until the routine ends, unless you change the value in the register. The exception can occur under certain conditions when a flow path joins the code following a .SET_REGISTERS directive. The following example illustrates such an exception. R2 is declared aligned, and at a subsequent label, 10$, which is before the next write access to the register, a flow path joins the code. R2 will be treated as unaligned following the label, because it is unaligned from the other path. INCL R2 ; R2 is now unaligned . . . BLBC R0, 10$ . . . MOVL R5, R2 .SET_REGISTERS ALIGNED=R2 MOVL R0, 4(R2) 10$: MOVL 4(R2), R3 ; R2 considered unaligned ; due to BLBC branch
5.12.3 – Examples
1.DIVL R0,R1 .SET_REGISTERS ALIGNED=R1 MOVL 8(R1), R2 ; Compiler will use aligned load. In this example, the compiler would normally consider R1 unaligned after the division. Any memory references using R1 as a base register (until it is changed again) would use unaligned load/stores. If it is known that the actual value will always be aligned, performance could be improved by adding a .SET_ REGISTERS directive, as shown. 2.MOV1 4(R0), R1 ;Stored memory addresses assumed .SET_REGISTERS UNALIGNED=R1 ;aligned so explicitly set it un- MOVL 4(R1), R2 ;aligned to avoid run-time fault. In this example, R1 would be considered longword aligned after the MOVL. If it is actually unaligned, an alignment fault would occur on memory reference that follows at run time. To prevent this, the .SET_REGISTERS directive can be used, as shown. 3..SET_REGISTERS READ=<R3,R4>, WRITTEN=R5 JSB DO_SOMETHING_USEFUL In this example, the read/written attributes are used to explicitly declare register uses which the compiler cannot detect. R3 and R4 are input registers to the JSB target routine, and R5 is an output register. This is particularly useful if the routine containing this JSB does not use these registers itself, or if the SET_REGISTERS directive and JSB are embedded in a macro. When compiled with /FLAG=HINTS, routines which use the macro would then have R3 and R4 listed as possible input registers, even if they are not used in that routine.
5.13 – .SYMBOL ALIGNMENT
This directive associates an alignment attribute with a symbol definition for a register offset. You can use this directive when you know the alignment of the base register. This attribute guarantees to the compiler that the base register has the same alignment, which enables the compiler to generate optimal code. Format .SYMBOL_ALIGNMENT argument-list
5.13.1 – Parameters
argument-list One of the arguments listed in the following table: Option Description long Declares longword alignment for any symbol that you declare after this directive. quad Declares quadword alignment for any symbol that you declare after this directive. none Turns off the alignment specified by the preceding .SYMBOL_ALIGNMENT directive.
5.13.2 – Description
The .SYMBOL_ALIGNMENT directive is used to associate an alignment attribute with the fields in a structure when you know the base alignment. It is used in pairs. The first .SYMBOL_ALIGNMENT directive associates either longword (long) or quadword (quad) alignment with the symbol or symbols that follow. The second directive, .SYMBOL_ALIGNMENT none, turns it off. Any time a reference is made with a symbol with an alignment attribute, the base register of that reference, in effect, inherits the symbol's alignment. The compiler also resets the base register's alignment to longword for subsequent alignment tracking. This alignment guarantee enables the compiler to produce more efficient code sequences.
5.13.3 – Example
OFFSET1 = 4 .SYMBOL_ALIGNMENT LONG OFFSET2 = 8 OFFSET3 = 12 .SYMBOL_ALIGNMENT QUAD OFFSET4 = 16 .SYMBOL_ALIGNMENT NONE OFFSET5 = 20 . . . CLR1 OFFSET2(R8) . . . MOVL R2, OFFSET4(R6) For OFFSET1 and OFFSET5, the compiler will use only its tracking information for deciding if Rn in OFFSET1(Rn) is aligned or not. For the other references, the base register will be treated as longword (OFFSET2 and OFFSET3) or quadword (OFFSET4) aligned. After each use of OFFSET2 or OFFSET4, the base register in the reference is reset to longword alignment. In this example, the alignment of R8 and R6 will be reset to longword, although the reference to OFFSET4 will use the stronger quadword alignment.
5.14 – .USE LINKAGE
OpenVMS I64 only. Establishes a temporary named or anonymous linkage that will be used by the compiler for the next CALLS, CALLG, JSB, BSBB, or BSBW instruction processed in lexical order. This directive is used when the target of the next CALLS, CALLG, JSB, BSBB, or BSBW instruction is not a name, but a run-time value (for example, CALLS #0, (R6)). When the compiler sees the next CALLS, CALLG, JSB, BSBB, or BSBW instruction, it will use the associated linkage to decide which registers need to be saved and restored around the call. After the instruction is processed, the temporary linkage is reset to null. Format .USE_LINKAGE [linkage_name] [,input] [,output] [,scratch] [,preserve]
5.14.1 – Parameters
linkage_name The name of a linkage previously defined with the .DEFINE_LINKAGE directive. If you specify a linkage_name, you cannot specify an input, output, scratch or preserve clause. input=<> Register set that indicates those registers from which the routine called by the next CALLS, CALLG, JSB, BSBB, or BSBW instruction receives input values. output=<> Register set that indicates those registers to which the routine called by the next CALLS, CALLG, JSB, BSBB, or BSBW instruction assigns values that are returned to the routine's caller. Registers included in this register set are not saved and restored around the call. scratch=<> Register set that indicates registers that are used within the routine called by the next CALLS, CALLG, JSB, BSBB, or BSBW instruction. This parameter is for documentation purposes only. preserve=<> Register set that indicates those registers which the routine called by the next CALLS, CALLG, JSB, BSBB, or BSBW instruction will preserve. Registers included in this register set are not saved and restored around a call to the routine, since the called routine will perform that task.
6 – MACRO Compiler Built-Ins
On OpenVMS I64 systems, the compiler provides two sets of built- ins: o Alpha instruction built-ins that are used to generate Itanium instructions for which there are no VAX equivalents. o Itanium instruction built-ins that are used to access Itanium instructions for which there are no VAX equivalents. On OpenVMS I64 systems, all of the Alpha PALcode built-ins are emulated by means of macros provided by the system. Both sets of built-ins are presented in tables. The second column of each table specifies the operands the built-in expects, where: WL = write longword ML = modify longword AL = address of longword WQ = write quadword RQ = read quadword MQ = modify quadword AQ = address of quadword AB = address of byte AW = address of word WB = write byte WW = write word NOTE Be careful when mixing built-ins with VAX MACRO instructions on the same registers. The code generated by the compiler expects registers to contain 32-bit sign-extended values, but it is possible to create 64-bit register values that are not in this format. Subsequent longword operations on these registers could produce incorrect results. Therefore, make sure to return registers to 32-bit sign- extended format before using them in VAX MACRO instructions as source operands. Note that loading the register with a new value using a VAX MACRO instruction (such as MOVL) returns it to this format.
6.1 – Alpha Instruction Built-Ins
Ported VAX MACRO code sometimes requires access to Alpha native instructions to deal directly with a 64-bit quantity or to include an Alpha instruction that has no VAX equivalent. The compiler provides built-ins to allow you access to these instructions. On OpenVMS I64 systems, the compiler generates equivalent Itanium instructions. The following byte and word built-ins are included in the MACRO compiler: o EVAX_LDBU o EVAX_LDWU o EVAX_STB o EVAX_STW o EVAX_SEXTB o EVAX_SEXTW You use these built-ins in the same way that you use native VAX instructions, using any VAX operand mode. For example, EVAX_ ADDQ 8(R0),(SP)+,R1 is legal. The only exception is that the first operand of any Alpha load/store built-in (EVAX_LD*, EVAX_ ST*) must be a register. The following table summarizes the Alpha built-ins supported by the compiler. The built-ins that are Alpha-only (cannot be used to generate or access Itanium instructions) are noted in the table. Functional on Built-in Operands Description OpenVMS I64? EVAX_SEXTB <RQ,WB> Sign-extend byte Yes EVAX_SEXTW <RQ,WW> Sign-extend word Yes EVAX_SEXTL <RQ,WL> Sign-extend longword Yes EVAX_LDBU <WQ,AB> Load zero-extended Yes byte from memory EVAX_LDWU <WQ,AQ> Load zero-extended Yes word from memory EVAX_LDLL <WL,AL> Load longword locked Yes EVAX_LDAQ <WQ,AQ> Load address of Yes quadword EVAX_LDQ <WQ,AQ> Load quadword Yes EVAX_LDQL <WQ,AQ> Load quadword locked Yes EVAX_LDQU <WQ,AQ> Load unaligned Yes quadword EVAX_STB <RQ,AB> Store byte from Yes register to memory EVAX_STW <RQ,AW> Store word from Yes register to memory EVAX_STLC <ML,AL> Store longword Yes conditional EVAX_STQ <RQ,AQ> Store quadword Yes EVAX_STQC <MQ,AQ> Store quadword Yes conditional EVAX_STQU <RQ,AQ> Store unaligned Yes quadword EVAX_ADDQ <RQ,RQ,WQ> Quadword add Yes EVAX_SUBQ <RQ,RQ,WQ> Quadword subtract Yes EVAX_MULQ <RQ,RQ,WQ> Quadword multiply Yes EVAX_UMULH <RQ,RQ,WQ> Unsigned quadword Yes multiply high EVAX_AND <RQ,RQ,WQ> Logical product Yes EVAX_OR <RQ,RQ,WQ> Logical sum Yes EVAX_XOR <RQ,RQ,WQ> Logical difference Yes EVAX_BIC <RQ,RQ,WQ> Bit clear Yes EVAX_ORNOT <RQ,RQ,WQ> Logical sum with Yes complement EVAX_EQV <RQ,RQ,WQ> Logical equivalence Yes EVAX_SLL <RQ,RQ,WQ> Shift left logical Yes EVAX_SRL <RQ,RQ,WQ> Shift right logical Yes EVAX_SRA <RQ,RQ,WQ> Shift right Yes arithmetic EVAX_EXTBL <RQ,RQ,WQ> Extract byte low Yes EVAX_EXTWL <RQ,RQ,WQ> Extract word low Yes EVAX_EXTLL <RQ,RQ,WQ> Extract longword low Yes EVAX_EXTQL <RQ,RQ,WQ> Extract quadword low Yes EVAX_EXTBH <RQ,RQ,WQ> Extract byte high Yes EVAX_EXTWH <RQ,RQ,WQ> Extract word high Yes EVAX_EXTLH <RQ,RQ,WQ> Extract longword high Yes EVAX_EXTQH <RQ,RQ,WQ> Extract quadword high Yes EVAX_INSBL <RQ,RQ,WQ> Insert byte low Yes EVAX_INSWL <RQ,RQ,WQ> Insert word low Yes EVAX_INSLL <RQ,RQ,WQ> Insert longword low Yes EVAX_INSQL <RQ,RQ,WQ> Insert quadword low Yes EVAX_INSBH <RQ,RQ,WQ> Insert byte high Yes EVAX_INSWH <RQ,RQ,WQ> Insert word high Yes EVAX_INSLH <RQ,RQ,WQ> Insert longword high Yes EVAX_INSQH <RQ,RQ,WQ> Insert quadword high Yes EVAX_TRAPB <> Trap barrier No EVAX_MB <> Memory barrier Yes EVAX_RPCC <WQ> Read process cycle No counter EVAX_CMPEQ <RQ,RQ,WQ> Integer signed Yes compare, equal EVAX_CMPLT <RQ,RQ,WQ> Integer signed Yes compare, less than EVAX_CMPLE <RQ,RQ,WQ> Integer signed Yes compare, less equal EVAX_CMPULT <RQ,RQ,WQ> Integer unsigned Yes compare, less than EVAX_CMPULE <RQ,RQ,WQ> Integer unsigned Yes compare, less equal EVAX_BEQ <RQ,AQ> Branch equal Yes EVAX_BLT <RQ,AQ> Branch less than Yes EVAX_BNE <RQ,AQ> Branch not equal Yes EVAX_CMOVEQ <RQ,RQ,WQ> Conditional Yes move/equal EVAX_CMOVNE <RQ,RQ,WQ> Conditional move/not Yes equal EVAX_CMOVLT <RQ,RQ,WQ> Conditional move/less Yes than EVAX_CMOVLE <RQ,RQ,WQ> Conditional move/less Yes or equal EVAX_CMOVGT <RQ,RQ,WQ> Conditional Yes move/greater than EVAX_CMOVGE <RQ,RQ,WQ> Conditional Yes move/greater or equal EVAX_CMOVLBC <RQ,RQ,WQ> Conditional move/low Yes bit clear EVAX_CMOVLBS <RQ,RQ,WQ> Conditional move/low Yes bit set EVAX_MF_FPCR <WQ> Move from floating- No point control register EVAX_MT_FPCR <WQ,RQ> Move to floating- No point control register EVAX_ZAP <RQ,RQ,WQ> Zero bytes Yes EVAX_ZAPNOT <RQ,RQ,WQ> Zero bytes with NOT Yes mask
6.2 – Itanium[R] Instruction Built-Ins
Built-in Operands Description IA64_BREAK <RQ> Generate a break instruction fault with the immediate operand provided IA64_ <WQ,RQ,RQ> Generate a move-from-indirect-register GETINDREG instruction with the first operand as the destination, the second operand as a literal specifying which indirect register file to access, and the third operand as the index into the register file IA64_GETREG <WQ,RQ> Generate a move-from-application- register or move-from-control-register instruction with the first operand as the destination and the second operand as a literal specifying which application or control register to read IA64_LFETCH <RQ,RQ> Generate a line prefetch (LFETCH) or IA64_LFETCH_EXCL <RQ,RQ> exclusive line prefetch (LFETCH.EXCL) instruction using the first operand as the address to prefetch and the second operand for either the reg-base-update- form or the imm-base-update-form. If the operand is the literal zero, the no-base-update-form will be used IA64_PROBER <WQ,RQ,RQ> Generate a probe.r instruction with the first argument as the destination, the second argument as the virtual address to probe, and the third operand as the privilege level IA64_PROBEW <WQ,RQ,RQ> Generate a probe.w instruction with the first argument as the destination, the second argument as the virtual address to probe, and the third operand as the privilege level IA64_RSM <RQ> Generate a reset system mask ('RSM') instruction with the specified mask IA64_RUM <RQ> Generate a reset user mask ('RUM') instruction with the specified mask IA64_SETREG <RQ,RQ> Generate a move-to-application-register or move-to-control-register instruction with the first operand as a literal specifying which application or control register to write and the second operand as the value to write into the register IA64_SRLZD <> Generate a serialize data ('SRLZD') instruction IA64_SRLZI <> Generate a serialize instruction ('SRLZI') instruction IA64_SSM <RQ> Generate a set system mask ('SSM') instruction with the specified mask IA64_SUM <RQ> Generate a set user mask ('SUM') instruction with the specified mask IA64_TAK <WK,RQ> Generate a read translation access key ('TAK') instruction
7 – Macros for Porting from VAX to Alpha or I64
The following macros facilitate the porting of VAX MACRO code to an OpenVMS Alpha or OpenVMS I64 system. The macros are grouped according to their function.
7.1 – Calculating Page-Size Values
The following macros provide a standard, architecture-independent means for calculating page-size dependent values: o $BYTES_TO_PAGES o $NEXT_PAGE o $PAGES_TO_BYTES o $PREVIOUS_PAGE o $ROUND_RETADR o $START_OF_PAGE These macros reside in the directory SYS$LIBRARY:STARLET.MLB and can be used by both application code and system code. Because application code does not have access to SYSTEM_DATA_CELLS, you must supply the relevant masks, shift values, and so on. The shift values are correlated with the page size of the processor. The rightshift values are negative; the leftshift values are positive, as shown in Shift Values. Table D-1 Shift Values Page size rightshift leftshift 512 bytes (VAX) -9 9 8K (OpenVMS Alpha or -13 13 OpenVMS I64) 16K -14 14 32K -15 15 64K -16 16 Typically, the application issues a call to $GETSYI (specifying the SYI$_PAGESIZE item descriptor) to obtain the CPU-specific page size and then compute other values from the page size that is returned. The following conventions apply to the macros described in this section: o If the destination operand is blank, the source operand is used as the destination. o All macros conditionalize code on the symbols VAXPAGE and BIGPAGE. o Several macros allow for page-size-independent code on VAX systems with the independent=YES argument. These macros generate code in which I-stream fetches are changed to memory accesses. Because this is inherently slower on a VAX system, the default value of the independent argument is NO.
7.1.1 – $BYTES TO PAGES
Converts a byte count to a page count. Format $BYTES_TO_PAGES source_bytcnt, dest_pagcnt, rightshift, roundup=YES, quad=YES
7.1.1.1 – Parameters
source_bytcnt Source byte count. dest_pagcnt Destination of page count. rightshift Location of application-provided value to shift (in place of multiply). This value is a function of the page size, as shown in the table on shift values. roundup=YES If YES, page-size-1 is added to byte count before shifting; if NO, page count is truncated. Any other value is treated as the user-specified address of the page-size-1 value. Note that roundup=YES is incompatible with the presence of the rightshift argument; invoking the macro with both these arguments generates a compile-time warning. quad=YES If YES, the conversion supports 64-bit addressing. If NO, the conversion does not support 64-bit addressing.
7.1.2 – $NEXT PAGE
Computes the virtual address of the first byte in the next page. Format $NEXT_PAGE source_va, dest_va, clearbwp=NO, user_pagesize_addr, user_mask_addr, quad=YES
7.1.2.1 – Parameters
source_va Source virtual address. dest_va Destination of virtual address within next page. clearbwp=NO If YES, masks the byte-within-page portion of the source virtual address. The clearbwp=NO option is a performance enhancement, avoiding unnecessary instructions if you know you are starting on a page boundary or you are intending to divide by page-size anyway. user_pagesize_addr Location of the page-size value (returned by a call to the $GETSYI system service specifying the SYI$_PAGESIZE item descriptor) in the application data area. If this argument is blank, the macro uses MMG$GL_PAGESIZE (bigpage) or MMG$C_VAX_ PAGE_SIZE (vaxpage). user_mask_addr Location of the application-provided byte-within-page mask. If this argument is blank, the macro uses MMG$GL_BWP_MASK if user_ pagesize_addr is also blank. Otherwise, it subtracts 1 from the contents of the user_pagesize_addr and uses that value. quad=YES If YES, the conversion supports 64-bit addressing. If NO, the conversion does not support 64-bit addressing.
7.1.3 – $PAGES TO BYTES
Converts a page count to a byte count. Format $PAGES_TO_BYTES source_pagcnt, dest_bytcnt, leftshift, quad=YES
7.1.3.1 – Parameters
source_pagcnt Source page count. dest_bytcnt Destination of byte count. leftshift Location of application-provided value to shift (in place of multiply). This value is a function of the page size, as shown in the table on shift values. quad=YES If YES, the conversion supports 64-bit addressing. If NO, the conversion does not support 64-bit addressing.
7.1.4 – $PREVIOUS PAGE
Computes the virtual address of the first byte in the previous page. Format $PREVIOUS_PAGE source_va, dest_va, clearbwp=NO, user_pagesize_addr, user_mask_addr, quad=YES
7.1.4.1 – Parameters
source_va Source virtual address. dest_va Destination of virtual address within previous page. clearbwp=NO If YES, masks the byte-within-page portion of the source virtual address. The clearbwp=NO option is a performance enhancement, avoiding unnecessary instructions if you know you are starting on a page boundary or you are intending to divide by page-size anyway. user_pagesize_addr Location of the page-size value (returned by a call to the $GETSYI system service specifying the SYI$_PAGESIZE item descriptor) in the application data area. If this argument is blank, the macro uses MMG$GL_PAGESIZE (bigpage) or MMG$C_VAX_ PAGE_SIZE (vaxpage). user_mask_addr Location of the application-provided byte-within-page mask. If this argument is blank, the macro uses MMG$GL_BWP_MASK if user_ pagesize_addr is also blank. Otherwise, it subtracts 1 from the contents of the user_pagesize_addr and uses that value. quad=YES If YES, the conversion supports 64-bit addressing. If NO, the conversion does not support 64-bit addressing.
7.1.5 – $ROUND RETADR
Rounds the range implied by the virtual addresses in a retadr array returned from a memory management system service to a range that is the factor of CPU-specific pages. The return value can be supplied as an inadr array in a subsequent call to another memory management system service. Format $ROUND_RETADR retadr, full_range, user_mask_addr, direction=ASCENDING
7.1.5.1 – Parameters
retadr Address of array of two 32-bit addresses, typically returned from $CRMPSC or a similar service. This value can be in the form of either "label" or "(Rx)". full_range Output array of two longwords. FULL_RANGE[0] is retadr[0] rounded down to a CPU-specific page boundary, and FULL_RANGE[1] is retadr[1] rounded up to one less than a CPU-specific page boundary (that is, to the last byte in the page). user_mask_addr Location of application-provided byte-within-page mask. If this argument is blank, the macro uses MMG$GL_BWP_MASK on an OpenVMS Alpha or OpenVMS I64 system and VA$M_BYTE on an OpenVMS VAX system. direction=ASCENDING Direction of rounding. The keywords are defined in the following table: ASCENDING retadr[0] < retadr[1] DESCENDING retadr[1] < retadr[0] UNKNOWN Values are compared at run time, then proper rounding is performed
7.1.6 – $START OF PAGE
Converts a virtual address to the address of the first byte within that page. Format $START_OF_PAGE source_va, dest_va, user_mask_addr, quad=YES
7.1.6.1 – Parameters
source_va Source virtual address. dest_va Destination of virtual address of first byte within page. user_mask_addr Location of application-provided byte-within-page mask. If this argument is blank, the macro uses MMG$GL_BWP_MASK on an OpenVMS Alpha or OpenVMS I64 system and MMG$C_VAX_PAGE_SIZE - 1 (defined in $pagedef) on an OpenVMS VAX system. quad=YES If YES, the conversion supports 64-bit addressing. If NO, the conversion does not support 64-bit addressing.
7.2 – Saving and Restoring 64-Bit Registers
Frequently, VAX MACRO source code must save and restore register values, because that is part of the defined interface or because the code requires work registers. On OpenVMS VAX, code can invoke any number of macros to do this. On OpenVMS Alpha and OpenVMS I64, you cannot simply replace these macros with 64-bit pushes and pops to and from the stack, because there is no guarantee that the macro caller has a quadword-aligned stack. Instead, you should replace such macro invocations with $PUSH64 and $POP64 macros. These macros, located in STARLET.MLB, preserve all 64 bits of a register but use longword references to do so.
7.2.1 – $POP64
Pops the 64-bit value on the top of the stack into a register. Format $POP64 reg
7.2.1.1 – Parameters
reg Register into which the macro places the 64-bit value from the top of the stack.
7.2.1.2 – Description
$POP64 takes the 64-bit value at the top of the stack and places it in a register using longword instructions. This is to avoid using quadword instructions when an alignment fault should be avoided, but restoring all 64 bits is necessary.
7.2.2 – $PUSH64
Pushes the contents of a 64-bit register onto the stack. Format $PUSH64 reg
7.2.2.1 – Parameters
reg Register to be pushed onto the stack.
7.2.2.2 – Description
$PUSH64 takes a 64-bit register and puts it on the stack using longword instructions. This is to avoid using quadword instructions when an alignment fault should be avoided, but saving all 64 bits is necessary.
7.3 – Locking Pages into a Working Set
Five macros are provided for locking pages into a working set. These macros reside in SYS$LIBRARY:LIB.MLB. For a description of how to use these macros, see the VSI OpenVMS MACRO Compiler Porting and User's Guide. Three macros are used for image initialization-time lockdown, and two macros are used for on-the-fly lockdown. NOTE If the code is being locked because the IPL will be raised above 2, where page faults cannot occur, make sure that the delimited code does not call run-time library or other procedures. The VAX MACRO compiler generates calls to routines to emulate certain VAX instructions. An image that uses these macros must link against the system base image so that references to these routines are resolved by code in a nonpageable executive image. For OpenVMS I64 systems, these macros are still under development and additional OpenVMS routines are being provided to lock working sets. See the OpenVMS I64 Release Notes for more information.
7.3.1 – $LOCK PAGE INIT
Required in the initialization routines of an image that is using $LOCKED_PAGE_START and $LOCKED_PAGE_END to delineate areas to be locked at initialization time. Format $LOCK_PAGE_INIT [error]
7.3.1.1 – Parameters
[error] Address to which to branch if one of the $LKWSET calls fail. If this address is reached, R0 reflects the status of the failed call, and R1 contains 0 if the call to lock the code failed, or 1 if that call succeeded but the call to lock the linkage section failed.
7.3.1.2 – Description
$LOCK_PAGE_INIT creates the necessary psects and issues the $LWKSET calls to lock into the working set the code and linkage sections that were declared by $LOCKED_PAGE_START and $LOCKED_ PAGE_END. R0 and R1 are destroyed by this macro. The psects locked by this macro are $LOCK_PAGE_2 and $LOCK_ LINKAGE_2. If code sections in other modules, written in other languages, use these psects, they will be locked by an invocation of this macro in a VAX MACRO module.
7.3.2 – $LOCKED PAGE END
Marks the end of a section of code that may be locked at image initialization time by the $LOCK_PAGE_INIT macro. Format $LOCKED_PAGE_END [link_sect]
7.3.2.1 – Parameters
[link_sect] Psect to return to if the linkage psect in effect when the $LOCKED_PAGE_START macro was executed was not the default linkage psect, $LINKAGE.
7.3.2.2 – Description
$LOCKED_PAGE_END is used with $LOCKED_PAGE_START to delineate code that may be locked at image initialization time by the $LOCK_PAGE_INIT macro. The code delineated by these macros must contain complete routines-execution cannot fall through either macro, nor can you branch into or out of the locked code. Any attempt to branch into or out of the locked code section or to fall through the macros will be flagged by the compiler with an error.
7.3.3 – $LOCKED PAGE START
Marks the start of a section of code that may be locked at image initialization time by the $LOCK_PAGE_INIT macro. Format $LOCKED_PAGE_START There are no parameters for this macro.
7.3.3.1 – Description
$LOCKED_PAGE_START is used with $LOCKED_PAGE_END to delineate code that may be locked at image initialization time by the $LOCK_PAGE_INIT macro. The code delineated by these macros must contain complete routines-execution may not fall through either macro, nor may the locked code be branched into or out of. Any attempt to branch into or out of the locked code section or to fall through the macros will be flagged by the compiler with an error.
7.3.4 – $LOCK PAGE
Marks the beginning of a section of code to be locked on-the-fly. Format $LOCK_PAGE [error]
7.3.4.1 – Parameters
[error] Address to branch to if one of the $LKWSET calls fail.
7.3.4.2 – Description
This macro is placed inline in executable code and must be followed by the $UNLOCK_PAGE macro. The $LOCK_PAGE/$UNLOCK_PAGE macro pair creates a separate routine in a separate psect. $LOCK_ PAGE locks the pages and linkage section of this separate routine into the working set and JSRs to it. All code between this macro and the matching $UNLOCK_PAGE macro is included in the locked routine and is locked down. All registers are preserved by this macro unless the error address parameter is present and one of the calls fail. If that happens, R0 reflects the status of the failed call. R1 then contains 0 if the call to lock the code failed or 1 if that call succeeded but the call to lock the linkage section failed. If the ERROR parameter is used, the ERROR label must be placed outside the scope of the $LOCK_PAGE and $UNLOCK_PAGE pair. This is because the error routine is branched to before calling the subroutine that the $LOCK_PAGE and $UNLOCK_PAGE routines create. Note that since the locked code is made into a separate routine, any references to local stack storage within the routine will have to be changed, as the stack context is no longer the same. Also, you cannot branch into or out of the locked code from the rest of the routine.
7.3.5 – $UNLOCK PAGE
Marks the end of a section of code to be locked on-the-fly. Format $UNLOCK_PAGE [error][,LINK_SECT]
7.3.5.1 – Parameters
[error] An error address to which to branch if one of the $ULKWSET calls fail. [link_sect] Linkage psect to return to if the linkage psect in effect when the $LOCK_PAGE macro was executed was not the default linkage psect, $LINKAGE.
7.3.5.2 – Description
$UNLOCK_PAGE returns from the locked routine created by the $LOCK_PAGE and $UNLOCK_PAGE macro pair and then unlocks the pages and linkage section from the working set. This macro is placed inline in executable code after a $LOCK_PAGE macro. All registers are preserved by this macro unless the error address parameter is present and one of the calls fail. If that happens, R0 reflects the status of the failed call. R1 then contains 0 if the call to unlock the code failed or 1 if that call succeeded but the call to unlock the linkage section failed. If the error parameter is used, the error label must be placed outside the scope of the $LOCK_PAGE and $UNLOCK_PAGE pair. This is because the error routine is branched to after returning from the subroutine created by the $LOCK_PAGE and $UNLOCK_PAGE routines.
8 – Macros for 64-Bit Addressing
These macros reside in the directory SYS$LIBRARY:STARLET.MLB and can be used by both application code and system code. The page macros accommodate for 64-bit addresses. The support is provided by the QUAD=NO/YES parameter. You can use certain arguments to these macros to indicate register sets. To express a register set, list the registers, separated by commas, within angle brackets. For example: <R1,R2,R3> If the set contains only one register, the angle brackets are not required.
8.1 – $SETUP CALL64
Initializes the call sequence. Format $SETUP_CALL64 arg_count, inline=true | false
8.1.1 – Parameters
arg_count The number of arguments in the call. inline Forces inline expansion, rather than creation of a JSB routine, when set to TRUE. If there are six or fewer arguments on OpenVMS Alpha, or eight or fewer on OpenVMS I64, the default is inline=false.
8.1.2 – Description
This macro initializes the state for a 64-bit call. It must be used before using $PUSH_ARG64 and $CALL64. If there are six or fewer arguments on OpenVMS Alpha, or eight or fewer on OpenVMS I64, the code is always in line. By default, if there are more than six arguments on OpenVMS Alpha or eight arguments on OpenVMS I64, this macro creates a JSB routine that is invoked to perform the actual call. However, if the inline option is specified as inline=true, the code is generated in line. This option should be enabled only if the code in which it appears has a fixed stack depth. A fixed stack depth can be assumed if no RUNTIMSTK or VARSIZSTK messages have been reported. Otherwise, if the stack alignment is not at least quadword, there might be many alignment faults in the called routine and in anything the called routine calls. The default behavior (inline=false) does not have this problem. If there are more than six arguments on OpenVMS Alpha or eight arguments on OpenVMS I64, there can be no references to AP or SP between a $SETUP_CALL64 and the matching $CALL64, because the $CALL64 code may be in a separate JSB routine. In addition, temporary registers (R16 and above) may not survive the $SETUP_ CALL64. NOTE The $SETUP_CALL64, $PUSH_ARG64, and $CALL64 macros are intended to be used in an inline sequence. That is, you cannot branch into the middle of a $SETUP_CALL64/$PUSH_ ARG64/$CALL64 sequence, nor can you branch around $PUSH_ ARG64 macros or branch out of the sequence to avoid the $CALL64.
8.2 – $PUSH ARG64
Does the equivalent of argument pushes for a call. Format $PUSH_ARG64 argument
8.2.1 – Parameters
argument The argument to be pushed.
8.2.2 – Description
This macro pushes a 64-bit argument for a 64-bit call. The macro $SETUP_CALL64 must be used before you can use $PUSH_ARG64. Arguments will be read as aligned quadwords. That is, $PUSH_ARG64 4(R0) will read the quadword at 4(R0), and push the quadword. Any indexed operations will be done in quadword mode. To push a longword value from memory as a quadword, first move it into a register with a longword instruction, and then use $PUSH_ ARG64 on the register. Similarly, to push a quadword value that you know is not aligned, move it to a temporary register first, and then use $PUSH_ARG64. If the call contains more than six arguments on OpenVMS Alpha or eight arguments on OpenVMS I64, this macro checks for SP or AP references in the argument. If the call contains more than six arguments on OpenVMS Alpha or eight arguments on OpenVMS I64, SP references are not allowed, and AP references are allowed only if the inline option is used. Note that $PUSH_ARG64 cannot be in conditional code. $PUSH_ ARG64 updates several symbols, such as the remaining argument count. Attempting to write code that branches around a $PUSH_ ARG64 in the middle of a $SETUP_CALL64/$CALL64 sequence will not work properly.
8.3 – $CALL64
Invokes the target routine. Format $CALL64 call_target
8.3.1 – Parameters
call_target The routine to be invoked.
8.3.2 – Description
This macro calls the specified routine, assuming $SETUP_CALL64 has been used to specify the argument count, and $PUSH_ARG64 has been used to push the quadword arguments. This macro checks that the number of pushes matches what was specified in the setup call. The call_target operand must not be AP- or SP-based.
8.4 – $IS 32BITS
Checks the sign extension of the low 32 bits of a 64-bit value and directs the program flow based on the outcome of the check. Format $IS_32BITS quad_arg, leq_32bits, gtr_32bits, temp_reg=22
8.4.1 – Parameters
quad_arg A 64-bit quantity, either in a register or in an aligned quadword memory location. leq_32bits Label to branch to if quad_arg is a 32-bit sign-extended value. gtr_32bits Label to branch to if quad_arg is greater than 32 bits. temp_reg=22 Register to use as a temporary register for holding the low longword of the source value-R22 is the default.
8.4.2 – Description
$IS_32BITS checks the sign extension of the low 32 bits of a 64- bit value and directs the program flow based on the outcome of the check.
8.4.3 – Examples
1.$is_32bits R9, 10$ In this example, the compiler checks the sign extension of the low 32 bits of the 64-bit value at R9 using the default temporary register, R22. Depending on the type of branch and the outcome of the test, the program either branches or continues in line. 2.$is_32bits 4(R8), 20$, 30$, R28 In this example, the compiler checks the sign extension of the low 32 bits of the 64-bit value at 4(R8) using R28 as a temporary register and, based on the check, branches to either 20$ or 30$.
8.5 – $IS DESC64
Tests the specified descriptor to determine if it is a 64-bit format descriptor, and directs the program flow based on the outcome of the test. Format $IS_DESC desc_addr, target, size=long | quad
8.5.1 – Parameters
desc_addr The address of the descriptor to test. target The label to branch to if the descriptor is in 64-bit format. size=long|quad The size of the address pointing to the descriptor. The default value is size=long.
8.5.2 – Description
$IS_DESC64 tests the fields that distinguish a 64-bit descriptor from a 32-bit descriptor. If it is in 64-bit form, a branch is taken to the specified target. The address to be tested is read as a longword, unless size=quad is specified.
8.5.3 – Examples
1.$is_desc64 r9, 10$ In this example, the descriptor pointed to by R9 is tested, and if it is in 64-bit form, a branch to 10$ is taken. 2.$is_desc64 8(r0), 20$, size=quad In this example, the quadword at 8(R0) is read, and the descriptor it points to is tested. If it is in 64-bit form, a branch to 20$ is taken.