On Alpha processors, you can set watchpoints on variables or arbitrary program locations in global sections. A global section is a region of memory that is shared among all processes of a multiprocess program. A watchpoint that is set on a location in a global section (a global section watchpoint) triggers when any process modifies the contents of that location. You set a global section watchpoint just as you would set a watchpoint on a static variable. However, because of the way the debugger monitors global section watchpoints, note the following point. When setting watchpoints on arrays or records, performance is improved if you specify individual elements rather than the entire structure with the SET WATCH command. If you set a watchpoint on a location that is not yet mapped to a global section, the watchpoint is treated as a conventional static watchpoint. When the location is subsequently mapped to a global section, the watchpoint is automatically treated as a global section watchpoint and an informational message is issued. The watchpoint is then visible from each process of the multiprocess program. Examples 1.DBG> SET WATCH MAXCOUNT This command establishes a watchpoint on the variable MAXCOUNT. 2.DBG> SET WATCH ARR DBG> GO . . . watch of SUBR\ARR at SUBR\%LINE 12+8 old value: (1): 7 (2): 12 (3): 3 new value: (1): 7 (2): 12 (3): 28 break at SUBR\%LINE 14 DBG> In this example, the SET WATCH command sets a watchpoint on the three-element integer array, ARR. Execution is then resumed with the GO command. The watchpoint triggers whenever any array element changes. In this case, the third element changed. 3.DBG> SET WATCH ARR(3) This command sets a watchpoint on element 3 of array ARR (Fortran array syntax). The watchpoint triggers whenever element 3 changes. 4.DBG> SET WATCH P_ARR[3:5] This command sets a watchpoint on the array slice consisting of elements 3 to 5 of array P_ARR (Pascal array syntax). The watchpoint triggers whenever any of these elements change. 5.DBG> SET WATCH P_ARR[3]:P_ARR[5] This command sets a separate watchpoint on each of elements 3 to 5 of array P_ARR (Pascal array syntax). Each watchpoint triggers whenever its target element changes. 6.DBG> SET TRACE/SILENT SUB2 DO (SET WATCH K) In this example, variable K is a nonstatic variable and is defined only when its defining routine, SUB2, is active (on the call stack). The SET TRACE command sets a tracepoint on SUB2. When the tracepoint is triggered during execution, the DO clause sets a watchpoint on K. The watchpoint is then canceled when execution returns from routine SUB2. The /SILENT qualifier suppresses the "trace . . . " message and the display of source code at the tracepoint. 7.DBG> g %DEBUG-I-ASYNCSSWAT, possible asynchronous system service and static watchpoint collision break at LARGE_UNION\main\%LINE 24192+60 DBG> sho call module name routine name line rel PC abs PC *LARGE_UNION main 24192 00000000000003A0 00000000000303A0 *LARGE_UNION __main 24155 0000000000000110 0000000000030110 FFFFFFFF80B90630 FFFFFFFF80B90630 DBG> ex/sour %line 24192 module LARGE_UNION 24192: sstatus = sys$getsyi (EFN$C_ENF, &sysid, 0, &syi_ile, &myiosb, 0, 0); In this example, an asynchronous write by SYS$QIO to its IOSB output parameter fails if that IOSB is being watched directly or even if it simply lives on the same page as an active static watchpoint. Debugger notices this problem and warns the user about potential collisions between static watchpoints and asynchronous system services.